Skip to main content

Advertisement

Log in

Cross-sectional biomonitoring study of pesticide exposures in Queensland, Australia, using pooled urine samples

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A range of pesticides are available in Australia for use in agricultural and domestic settings to control pests, including organophosphate and pyrethroid insecticides, herbicides, and insect repellents, such as N,N-diethyl-meta-toluamide (DEET). The aim of this study was to provide a cost-effective preliminary assessment of background exposure to a range of pesticides among a convenience sample of Australian residents. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n = 24 pools of 100 specimens). Concentrations of urinary pesticide biomarkers were quantified using solid-phase extraction coupled with isotope dilution high-performance liquid chromatography–tandem mass spectrometry. Geometric mean biomarker concentrations ranged from <0.1 to 36.8 ng/mL for organophosphate insecticides, <0.1 to 5.5 ng/mL for pyrethroid insecticides, and <0.1 to 8.51 ng/mL for all other biomarkers with the exception of the DEET metabolite 3-diethylcarbamoyl benzoic acid (4.23 to 850 ng/mL). We observed no association between age and concentration for most biomarkers measured but noted a “U-shaped” trend for five organophosphate metabolites, with the highest concentrations observed in the youngest and oldest age strata, perhaps related to age-specific differences in behavior or physiology. The fact that concentrations of specific and non-specific metabolites of the organophosphate insecticide chlorpyrifos were higher than reported in USA and Canada may relate to differences in registered applications among countries. Additional biomonitoring programs of the general population and focusing on vulnerable populations would improve the exposure assessment and the monitoring of temporal exposure trends as usage patterns of pesticide products in Australia change over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • (ABS) Australian Bureau of Statistics (2013) Australian health survey: biomedical results for chronic diseases, 2011–2012 kidney disease biomarkers, Canberra.

  • (APVMA) Australian Pesticides and Veterinary Medicines Authority (2014) Final pesticide and veterinary medicines product sales 12–13 financial year. Commonwealth of Australia Gazette No APVMA 4.

  • (APVMA) Australian Pesticides and Veterinary Medicines Authority (2015) Public chemical registration information system search. Available from: https://portal.apvma.gov.au/pubcris. Accessed 30 Dec 2015

  • (CDC) United States Centers for Disease Control and Prevention (2015) Fourth national report on human exposure to environmental chemicals. February 2015.Updated Tables; U.S Department of Health and Human Services: Atlanta, GA, USA. Available from: www.cdc.gov/exposurereport.

  • (CDC) United States Centers for Disease Control and Prevention (2016a). NHANES 2007–2008 laboratory data. Available from: wwwn.cdc.gov/Nchs/Nhanes/Search/Nhanes07_08.aspx. Accessed 15 Feb 2016

  • (CDC) United States Centers for Disease Control and Prevention (2016b). NHANES 2009–2010 laboratory data. Available from: wwwn.cdc.gov/Nchs/Nhanes/Search/Nhanes09_10.aspx. Accessed 15 Feb 2016

  • (FSANZ) Food Standards Australia New Zealand (2011) The 23rd Australian total diet study.

  • (NRC) National Research Council (2006) Human biomonitoring for environmental chemicals. Washington, DC: The National Academies Press. doi:10.17226/11700. Available from: www.nap.edu/catalog/11700/human-biomonitoring-for-environmental-chemicals

  • (US EPA) Environmental Protection Ageny USA (2000) Chlorpyrifos revised risk assessment and agreement with registrants: Washington, DC: Office of Prevention, Pesticides, and Toxic Substances; Accessed 4/01/2016. Available from: http://www.ibiblio.org/london/NAFEX/message-archives/old/pdf00000.pdf.

  • (WHO) World Health Organisation (2011) Summary of principles for evaluating health risks in children associated with exposure to chemicals in Children’s Environmental Health. World Health Organization, Geneva, Switzerland.

  • Abdeen Z, Berman T, Azmi K, Abu Seir R, Agha H, Ein-Mor E, Goen T, Stein Y, Richter E, Calderon-Margalit R (2015) Urinary organophosphate metabolite levels in Palestinian pregnant women: results of the Middle East regional cooperation project. Int J Environ Health Res:1–13 [epub ahead of print]. doi:10.1080/09603123.2015.1109067

  • Agriculture Victoria (2015) Cancellation of products containing parathion-methyl. Accessed 30/12/2015). Available from: http://agriculture.vic.gov.au/agriculture/farm-management/chemical-use/publications/cancellation-of-products-containing-parathion-methyl

  • Aylward LL, Green E, Porta M, Toms LM, Den Hond E, Schulz C, Gasull M, Pumarega J, Conrad A, Kolossa-Gehring M, Schoeters G, Mueller JF (2014) Population variation in biomonitoring data for persistent organic pollutants (POPs): an examination of multiple population-based datasets for application to Australian pooled biomonitoring data. Environ Int 68:127–138

    Article  CAS  Google Scholar 

  • Babina K, Dollard M, Pilotto L, Edwards JW (2012) Environmental exposure to organophosphorus and pyrethroid pesticides in South Australian preschool children: a cross sectional study. Environ Int 48:109–120. doi:10.1016/j.envint.2012.07.007

    Article  CAS  Google Scholar 

  • Baxter J, Gray M, Hayes A (2011) Families in regional, rural and remote Australia. Australian Government Australian Institute of Family Studies. Accessed: 19/05/2016. Available from: https://aifs.gov.au/sites/default/files/publication-documents/fs201103.pdf

  • Becker K, Seiwert M, Angerer J, Kolossa-Gehring M, Hoppe HW, Ball M, et al. (2006) GerES IV pilot study: assessment of the exposure of German children to organophosphorus and pyrethroid pesticides. Int J Hyg Environ Health 209(3):221–233. doi:10.1016/j.ijheh.2005.12.002

    Article  CAS  Google Scholar 

  • Berman T, Goldsmith R, Goen T, Spungen J, Novack L, Levine H, Amitai Y, Shohat T, Grotto I (2013) Urinary concentrations of organophosphate pesticide metabolites in adults in Israel: demographic and dietary predictors. Environ Int 60:183–189. doi:10.1016/j.envint.2013.08.008

    Article  CAS  Google Scholar 

  • Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, et al. (2011) Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect 119(8):1189–1195. doi:10.1289/ehp.1003185

    Article  CAS  Google Scholar 

  • Calafat AM, Needham LL (2009) What additional factors beyond state-of-the-art analytical methods are needed for optimal generation and interpretation of biomonitoring data? Environ Health Perspect 117(10):1481–1485. doi:10.1289/ehp.0901108

    Article  CAS  Google Scholar 

  • Caudill SP (2010) Characterizing populations of individuals using pooled samples. J Expos Sci Environ Epidemiol 20(1):29–37. doi:10.1038/jes.2008.72

    Article  Google Scholar 

  • Costanzo SD, Watkinson AJ, Murby EJ, Kolpin DW, Sandstrom MW (2007) ) Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments? Sci Tot Environ. 384(1–3):214–220. doi:10.1016/j.scitotenv.2007.05.036

    Article  CAS  Google Scholar 

  • Davis MD, Wade EL, Restrepo PR, Roman-Esteva W, Bravo R, Kuklenyik P, Calafat AM (2013) Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine. J Chrom B 929:18–26. doi:10.1016/j.jchromb.2013.04.005

    Article  CAS  Google Scholar 

  • English K, Jagals P, Ware R, Wylie C, Sly PD (2015) Insecticide exposure risk by age: an analysis of Queensland Poisons Information Centre calls. Australian New Zealand Journal of Public Health (under review)

  • Fortin MC, Bouchard M, Carrier G, Dumas P (2008) Biological monitoring of exposure to pyrethrins and pyrethroids in a metropolitan population of the province of Quebec, Canada. Environ Res 107(3):343–350. doi:10.1016/j.envres.2008.03.002

    Article  CAS  Google Scholar 

  • Gomez-Ramos MJ, Heffernan AL, Toms LML, Calafat AM, Ye X, Hobson P, Broomhall S, Mueller JF (2016) Concentrations of phthalates and DINCH metabolites in pooled urine from Queensland, Australia. Environ Int 88:179–186. doi:10.1016/j.envint.2015.12.016

    Article  CAS  Google Scholar 

  • Guodong D, Pei W, Ying T, Jun Z, Yu G, Xiaojin W, et al. (2012) Organophosphate pesticide exposure and neurodevelopment in young Shanghai children. Environmental science & technology 46(5):2911–2917. doi:10.1021/es202583d

    Article  Google Scholar 

  • Haines DA, Murray J (2012) Human biomonitoring of environmental chemicals—early results of the 2007-2009 Canadian health measures survey for males and females. Int J Hyg Environ Health 215(2):133–137. doi:10.1016/j.ijheh.2011.09.008

    Article  CAS  Google Scholar 

  • Heffernan AL, Aylward LL, Toms LM, Sly PD, Macleod M, Mueller JF (2014) Pooled biological specimens for human biomonitoring of environmental chemicals: opportunities and limitations. J Exp Sci Environ Epidemiol 24(3):225–232. doi:10.1038/jes.2013.76

    Article  CAS  Google Scholar 

  • Heffernan AL, Baduel C, Toms LML, Calafat AM, Ye X, Hobson P, Broomhall S, Mueller JF (2015) Use of pooled samples to assess human exposure to parabens, benzophenone-3 and triclosan in Queensland, Australia. Environ Int 85:77–83. doi:10.1016/j.envint.2015.09.001

    Article  CAS  Google Scholar 

  • Hornung RW, Reed LD (1990) Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 5:46–51

    Article  CAS  Google Scholar 

  • Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C (2012) Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol Lett 210(2):155–168. doi:10.1016/j.toxlet.2011.10.007

    Article  CAS  Google Scholar 

  • Kuklenyik P, Baker SE, Bishop AM, Morales-A P, Calafat AM (2013) On-line solid phase extraction-high performance liquid chromatography-isotope dilution-tandem mass spectrometry approach to quantify N. N-diethyl-m-toluamide and oxidative metabolites in urine Anal Chim Acta 787:267–273. doi:10.1016/j.aca.2013.05.055

    CAS  Google Scholar 

  • Larson A, Bryan J, Howard P, McGinn D (2000) Queenslanders’ use of personal strategies to minimise risk of mosquito-borne disease. Aust N Z J Public Health 24(4):374–377

    Article  CAS  Google Scholar 

  • Le Grand R, Dulaurent S, Gaulier JM, Saint-Marcoux F, Moesch C, Lachatre G (2012) Simultaneous determination of five synthetic pyrethroid metabolites in urine by liquid chromatography-tandem mass spectrometry: application to 39 persons without known exposure to pyrethroids. Toxicol Lett 210(2):248–253. doi:10.1016/j.toxlet.2011.08.016

    Article  CAS  Google Scholar 

  • Lewis RC, Cantonwine DE, Anzalota Del Toro LV, Calafat AM, Valentin-Blasini L, Davis MD, Baker SE, Alshawabkeh AN, Cordero JF, Meeker JD (2014) Urinary biomarkers of exposure to insecticides, herbicides, and one insect repellent among pregnant women in Puerto Rico. Environ Health 13:97. doi:10.1186/1476-069X-13-97

    Article  Google Scholar 

  • Lewis RC, Cantonwine DE, Del Toro LV, Calafat AM, Valentin-Blasini L, Davis MD, Montesano MA, Alshawabkeh AN, Cordero JF, Meeker JD (2015) Distribution and determinants of urinary biomarkers of exposure to organophosphate insecticides in Puerto Rican pregnant women. Sci Total Environ 512-513:337–344. doi:10.1016/j.scitotenv.2015.01.059

    Article  CAS  Google Scholar 

  • Lu CS, Toepel K, Irish R, Fenske RA, Barr DB, Bravo R (2006) Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ Health Perspect 114(2):260–263

    Article  CAS  Google Scholar 

  • Makri A, Goveia M, Balbus J, Parkin R (2004) Children’s susceptibility to chemicals: a review by developmental stage. J Toxicol Environ Health B Crit Rev 7(6):417–435. doi:10.1080/10937400490512465

    Article  CAS  Google Scholar 

  • Morgan MK (2012) Children’s exposures to pyrethroid insecticides at home: a review of data collected in published exposure measurement studies conducted in the United States. Int J Environ Res Pub Health 9(8):2964–2985. doi:10.3390/ijerph9082964

    Article  CAS  Google Scholar 

  • Morgan MK, Sheldon LS, Croghan CW, Jones PA, Chuang JC, Wilson NK (2007) An observational study of 127 preschool children at their homes and daycare centers in Ohio: environmental pathways to cis- and trans-permethrin exposure. Environ Res 104(2):266–274. doi:10.1016/j.envres.2006.11.011

    Article  CAS  Google Scholar 

  • Morgan MK, Sheldon LS, Croghan CW, Jones PA, Robertson GL, Chuang JC, Wilson NK, Lyu CW (2005) Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J Expo Anal Environ Epidemiol 15(4):297–309

    Article  CAS  Google Scholar 

  • Naeher LP, Tulve NS, Egeghy PP, Barr DB, Adetona O, Fortmann RC, Needham LL, Bozeman E, Hilliard A, Sheldon LS (2010) Organophosphorus and pyrethroid insecticide urinary metabolite concentrations in young children living in a southeastern United States city. Sci Tot Environ 408(5):1145–1153. doi:10.1016/j.scitotenv.2009.10.022

    Article  CAS  Google Scholar 

  • Odetokun MS, Montesano MA, Weerasekera G, Whitehead RD Jr, Needham LL, Barr DB (2010) Quantification of dialkylphosphate metabolites of organophosphorus insecticides in human urine using 96-well plate sample preparation and high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878(27):2567–2574. doi:10.1016/j.jchromb.2010.04.027

    Article  CAS  Google Scholar 

  • Oglobline AN, Elimelakh H, Tattam B, Geyer R, O’Donnell GE, Holder G (2001) Negative ion chemical ionization GC/MS-MS analysis of dialkylphosphate metabolites of organophosphate pesticides in urine of non-occupationally exposed subjects. Analyst 126(7):1037–1041. doi:10.1039/B102004H

    Article  CAS  Google Scholar 

  • Radcliffe J (2002) Pesticide use in Australia. Australian Academy of Technological Sciences and Innovation.

  • Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, et al. (2012) Brain anomalies in children exposed prenatally to a common organophosphate pesticide. PNAS 109(20):7871–7876. doi:10.1073/pnas.1203396109

    Article  CAS  Google Scholar 

  • Riederer AM, Bartell SM, Barr DB, Ryan PB (2008) Diet and nondiet predictors of urinary 3-phenoxybenzoic acid in NHANES 1999-2002. Environ Health Perspect 116(8):1015–1022. doi:10.1289/ehp.11082

    Article  Google Scholar 

  • Roberts JR, Karr CJ (2012) Pesticide exposure in children. Pediatrics 130(6):e1765–e1788. doi:10.1542/peds.2012-2758

    Article  Google Scholar 

  • Roca M, Miralles-Marco A, Ferre J, Perez R, Yusa V (2014) Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain. Environ Res 131:77–85. doi:10.1016/j.envres.2014.02.009

    Article  CAS  Google Scholar 

  • Rudel RA, Perovich LJ (2009) Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 43(1):170–181. doi:10.1016/j.atmosenv.2008.09.025

    Article  CAS  Google Scholar 

  • Schettgen T, Heudorf U, Drexler H, Angerer J (2002) Pyrethroid exposure of the general population—is this due to diet. Toxicol Lett 134(1–3):141–145

    Article  CAS  Google Scholar 

  • Scheuplein R, Charnley G, Doursen M (2002) Differential sensitivity of children and adults to chemical toxicity: I. Biological basis. Regul Toxicol Pharmacol 35:429–447

    Article  CAS  Google Scholar 

  • Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B, et al. (2014) Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the CHARGE study. Environ Health Perspect 122(10):1103–1109. doi:10.1289/ehp.1307044

    Google Scholar 

  • Thai PK, Heffernan AL, Toms LML, Li Z, Calafat AM, Hobson P, Broomhall S, Mueller JF (2016) Monitoring exposure to polycyclic aromatic hydrocarbons in an Australian population using pooled urine samples. Environ Int 88:30–35. doi:10.1016/j.envint.2015.11.019

    Article  CAS  Google Scholar 

  • Trunnelle KJ, Bennett DH, Ahn KC, Schenker MB, Tancredi DJ, Gee SJ, et al. (2014) Concentrations of the urinary pyrethroid metabolite 3-phenoxybenzoic acid in farm worker families in the MICASA study. Environ Res 131:153–159. doi:10.1016/j.envres.2014.03.003

    Article  CAS  Google Scholar 

  • Tulve NS, Suggs JC, McCurdy TR, Cohen Hubal EA, Moya J (2002) Frequency of mouthing behaviour in young children. J Expo Anal Environ Epidemiol 12(4):259–264

    Article  Google Scholar 

  • Turner MC, Wigle DT, Krewski D (2010) Residential pesticides and childhood leukemia: a systematic review and meta-analysis. Environ Health Perspect 118(1):33–41. doi:10.1289/ehp.0900966

    CAS  Google Scholar 

  • Van den Eede N, Heffernan AL, Hobson P, Mueller JF, Neels H, Covaci A (2015) Age-related phosphate flame retardant and plasticizer exposure in an Australian population. Environ Int 74:1–8. doi:10.1016/j.envint.2014.09.005

    Article  CAS  Google Scholar 

  • Wielgomas B, Piskunowicz M (2013) Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere 93(10):2547–2553. doi:10.1016/j.chemosphere.2013.09.070

    Article  CAS  Google Scholar 

  • Wielgomas B, Nahorski W, Czarnowski W (2013) Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of northern Poland. Int J Hyg Environ Health 216(3):295–300. doi:10.1016/j.ijheh.2012.09.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff at Entox and Sullivan Nicolaides Pathology Taringa for their assistance with the sample collection and pooling. We also gratefully acknowledge Sam Baker, Mark Davis, Angela Montesano, and other CDC staff for their technical assistance in measuring the urinary concentrations of the pesticide biomarkers. ALH is funded by an NHMRC-ARC Fellowship (APP1106911), KE by an Australian Government Postgraduate Award, LMT by an ARC DECRA (DE120100161), PDS is an NHMRC Senior Principal Research Fellow (no. 1102590), and JFM is an ARC Future Fellow (FF120100546). The authors would like to thank the Australian Government Department of the Environment for their financial support. The Florey Institute of Neuroscience and Mental Health acknowledges the strong support from the Victorian Government and in particular the funding from the Operational Infrastructure Support Grant. Entox is a joint venture of the University of Queensland and the Queensland Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AL Heffernan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the CDC or the views of the Australian Department of the Environment.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heffernan, A., English, K., Toms, L. et al. Cross-sectional biomonitoring study of pesticide exposures in Queensland, Australia, using pooled urine samples. Environ Sci Pollut Res 23, 23436–23448 (2016). https://doi.org/10.1007/s11356-016-7571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7571-7

Keywords

Navigation