Skip to main content
Log in

Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes

  • 4th International Symposium on Environmental Biotechnology and Engineering-2014
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance. Simultaneous electron acceptors refer to the simultaneous presence of two compounds operating as final electron acceptors in the biological respiratory chain (e.g., use of either O2 or NO3 in combination with a methanogenic environment) in a bioreactor or environmental niche. Four lab-scale, mesophilic, fluidized bed bioreactors (bioreactors) were implemented. Two bioreactors were operated as simultaneous methanogenic-denitrifying (MD) units, whereas the other two were operated in partially aerated methanogenic (PAM) mode. In the first period, all bioreactors received a wastewater with 1 g chemical oxygen demand of methanol per liter (COD-methanol/L). In a second period, all the bioreactors received the wastewater plus 80 mg perchloroethylene (PCE)/L; at the start of period 2, one MD and one PAM were coupled to side sand-zero valent iron filters (ZVI). All bioreactors were inoculated with a microbial consortium not acclimated to PCE. In this work, the performance of the full period 1 and the first 60 days of period 2 is reported and discussed. The COD removal efficiency and the nitrate removal efficiency of the bioreactors essentially did not change between period 1 and period 2, i.e., upon PCE addition. On the contrary, specific methanogenic activity in PAM bioreactors (both with and without coupled ZVI filter) significantly decreased. This was consistent with a sharp fall of methane productivity in those bioreactors in period 2. During period 2, PCE removals in the range 86 to 97 % were generally observed; the highest removal corresponded to PAM bioreactors along with the highest dehalogenation efficiency (94 %). Principal component analysis as well as cluster analysis confirmed the trends mentioned above, i.e., the better performance of PAM over MD, and the unexpected no effect of the ZVI side filters on PCE removal and dehalogenation efficiencies. To the best of our knowledge, this is the first report on the combined treatment ZVI-biological of a water polluted with PCE, where the biological operation relied on simultaneous electron acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alessi DS, Li ZH (2001) Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environ Sci Technol 35:3713–3717

    Article  CAS  Google Scholar 

  • Alther G (2004) Has “IN SITU” remediation replaced “Activated Carbon PUMP & TREAT” in the groundwater market? 18th International Activated Carbon Conference, Pittsburgh, PA, October 19–20, 2006

  • APHA (1998) Standard methods for the examination of water and wastewater 20th edn. Washington, D.C.

  • Aschengrau A, Rogers S, Ozonoff D (2003) Perchloroethylene-contaminated drinking water and the risk of breast cancer: additional results from Cape Cod, Massachusetts, USA. Environ Health Perspect 111:167–173

    Article  CAS  Google Scholar 

  • Bereded-Samuel Y, Petersen J, Skeen R (1996) Effect of perchloroethylene (PCE) on methane and acetate production by a methanogenic consortium. Appl Biochem Biotechnol 57-58:915–922

    Article  Google Scholar 

  • Bretón-Deval L, Rossetti S, Ríos-Leal E, Matturro B, Poggi-Varaldo HM (2016) Effect of coupling zero-valent iron side filters on performance of bioreactors fed with high concentration of perchloroethylene. J Environ Eng ASCE 142(5):9 Article 04016051

    Google Scholar 

  • Canova J (2010) PRB expanded to full-scale operation for accelerating treatment of metals. Technol News Trends, 1–3

  • Camiloti PR, Mockaitis G, Rodrigues JAD, Damianovic MHRZ, Foresti E, Zaiat M (2014) Innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for simultaneous sulfate reduction and organic matter removal. J Chem Technol Biotechnol 89:1044–1050

    Article  CAS  Google Scholar 

  • Capodaglio AG, Suidan M, Venosa AD, Callegari A (2010) Efficient degradation of MtBE and other gasoline-originated compounds by means of a biological reactor of novel conception: two case studies in Italy and the USA. Water Sci Technol 61:807–812

    Article  CAS  Google Scholar 

  • Clark CJ, Rao PSC, Annable MD (2003) Degradation of perchloroethylene in cosolvent solutions by zero-valent iron. J Hazard Mater 96:65–78

    Article  CAS  Google Scholar 

  • Chang YC, Kikuchi S, Kawauchi N, Sato T, Takamizawa K (2008) Complete dechlorination of tetrachloroethylene by use of an anaerobic Clostridium bifermentans DPH-1 and zero-valent iron. Environ Technol 29:381–391

    Article  CAS  Google Scholar 

  • Chen KF, Yeh TY, Kao CM, Sung WP, Lin CC (2012) Application of nanoscale zero-valent iron (nzvi) to enhance microbial reductive dechlorination of tce. A feasibility study. Curr Nanosci 8:55–59

    Article  CAS  Google Scholar 

  • Chen L, Jin S, Fallgren PH, Liu F, Colberg PJ (2013) Passivation of zero-valent iron by denitrifying bacteria and the impact on trichloroethene reduction in groundwater. Water Sci Technol 67:1254–1259

    Article  CAS  Google Scholar 

  • Cheng T, Dai YZ, Chen C, Huang ZQ (2012) Zero-valent iron supported microbial reductive dechlorination of 2,4-dichlorophenol. Asian J Chem 24:2579–2584

    CAS  Google Scholar 

  • Chu K-H, Alvarez-Cohen L (1999) Evaluation of toxic effects of aeration and trichloroethylene oxidation on methanotrophic bacteria grown with different nitrogen sources. Appl Environ Microbiol 65:766–772

    CAS  Google Scholar 

  • Dolfing J, VanEckert D, Meuller J (2006) Thermodynamics of low Eh reactions, Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May, 22–25

  • Dollhopf SL, Hashsham SA, Tiedje JM (2001) Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describecommunity dynamics and convergence. Microb Ecol 42:495–505

    Article  CAS  Google Scholar 

  • El-Fantroussi S, Naveau H, Agathos SN (1998) Anaerobic dechlorinating bacteria. Biotechnol Prog 14:167–188

    Article  CAS  Google Scholar 

  • EPA (1996) Pump-and-treat ground-water remediation: a guide for decision makers and practitioners. EPA/625/R-95/005, 74

  • EPA (2003) National Primary Drinking Water Standards. Office of Water (4606 M); EPA 816-F-03-016; www.epa.gov/safewater

  • Estrada-Vázquez C, Macarie H, Kato MT, Rodríguez-Vázquez R, Poggi-Varaldo HM (2001) Resistencia a la exposición al oxígeno de lodos anaerobios suspendidos. Interciencia 26:547–553

    Google Scholar 

  • Estrada-Vázquez C, Macarie H, Kato MT, Rodríguez-Vázquez R, Esparza-García F, Poggi-Varaldo HM (2003) The effect of the supplementation with a primary carbon source on the resistance to oxygen exposure of methanogenic sludge. Water Sci Technol 48:119–124

    Google Scholar 

  • Ferguson SJ, Richardson DJ (2004) The enzymes and bioenergetics of bacterial nitrate, nitrite, nitric oxide and nitrous oxide respiration. In: Zannoni D (ed) Respiration in archaea and bacteria: diversity of prokaryotic respiratory systems. Springer, Netherlands, Dordrecht, pp. 169–206

    Chapter  Google Scholar 

  • Frascari D, Fraraccio S, Nocentini M, Pinelli D (2013) Aerobic/anaerobic/aerobic sequenced biodegradation of a mixture of chlorinated ethenes, ethanes and methanes in batch bioreactors. Bioresour Technol 128:479–486

    Article  CAS  Google Scholar 

  • Garibay-Orijel C, Rios-Leal E, Garcia-Mena J, Poggi-Varaldo HM (2005) 2,4,6-Trichlorophenol and phenol removal in methanogenic and partially-aerated methanogenic conditions in a fluidized bed bioreactor. J Chem Technol Biotechnol 80:1180–1187

    Article  CAS  Google Scholar 

  • Garibay-Orijel C, Ahring BK, Rinderknecht-Seijas N, Poggi-Varaldo HM (2006) A simple model for simultaneous methanogenic-denitrification systems. J Chem Technol Biotechnol 81:173–181

    Article  CAS  Google Scholar 

  • Gregory KB, Mason MG, Picken HD, Weathers LJ, Parkin GF (2000) Bioaugmentation of Fe (0) for the remediation of chlorinated aliphatic hydrocarbons. Environ Eng Sci 17:169–181

    Article  CAS  Google Scholar 

  • Harendra S, Vipulanandan C (2008) Degradation of high concentrations of PCE solubilized in SDS and biosurfactant with Fe/Ni bi-metallic particles. Colloids Surf A Physicochem Eng Asp 322:6–13

    Article  CAS  Google Scholar 

  • Herrera-López D, García-Mena J, Poggi-Varaldo HM (2007) The addition of zero-valent iron to batch bioreactors with simultaneous electron acceptors: influence on removal of high concentrations of perchloroethylene. In: Gavaskar AR, Silver CF (ed) In situ and on-site bioremediation-2007. Proceedings of the Ninth International In Situ and On-Site Bioremediation Symposium, (Baltimore, Maryland; May 7–10, 2007), Baltimore

  • Herrera-López D, Garcia-Mena J, Poggi-Varaldo HM (2008) Coupling continuous bioreactors with zero-valent iron filters: the effect on removal of high concentrations of perchloroethylene. In: BM S (ed) Remediation of chlorinated and recalcitrant compounds—2008. Sixth international Conference Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2008). Battelle Press, Columbus, OH

    Google Scholar 

  • HHS (2005) 11th Report on Carcinogens U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program

  • Holliger C (1995) The anaerobic microbiology and biotreatment of chlorinated ethenes. Curr Opin Biotechnol 6:347–351

    Article  CAS  Google Scholar 

  • Kocamemi BA, Çeçen F (2005) Cometabolic degradation of TCE in enriched nitrifying batch systems. J Hazard Mater 125:260–265

    Article  Google Scholar 

  • Kristensen GH, Jorgensen EP (1992) Characterization of functional microorganism groups and substrate in activated sludge and wastewater by AUR, NUR and OUR. Water Sci Technol 25:43–57

    CAS  Google Scholar 

  • Lagakos SW, Wessen BJ, Zelen M (1986) An analysis of contaminated well water and health-effects in Woburn, Massachusetts. J Am Stat Assoc 81:583–596

    Article  Google Scholar 

  • Langwaldt JH, Puhakka JA (2000) On-site biological remediation of contaminated groundwater: a review. Environ Pollut 107:187–197

    Article  CAS  Google Scholar 

  • Li H, Shen TT, Wang XL, Lin KF, Liu YD, Lu SG, Gu JD, Wang P, Lu Q, Du XM (2013) Biodegradation of perchloroethylene and chlorophenol co-contamination and toxic effect on activated sludge performance. Bioresour Technol 137:286–293

    Article  CAS  Google Scholar 

  • Libhaber M, Orozco-Jaramillo Á (2012) Sustainable treatment and reuse of municipal wastewater for decision makers and practicing engineers. In: Libhaber M, Orozco-Jaramillo Á (ed). Iwa publishing

  • Ma CW, Wu YQ (2008) Dechlorination of perchloroethylene using zero-valent metal and microbial community. Environ Geol 55:47–54

    Article  CAS  Google Scholar 

  • Madoni P, Davoli D, Guglielmi L (1999) Response of SOUR and AUR to heavy metal contamination in activated sludge. Water Res 33:2459–2464

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053

    Article  CAS  Google Scholar 

  • Maere T, Villez K, Marsili-Libelli S, Naessens W, Nopens I (2012) Membrane bioreactor fouling behaviour assessment through principal component analysis and fuzzy clustering. Water Res 46:6132–6142

    Article  CAS  Google Scholar 

  • Min JE, Kim M, Pardue JH, Park JW (2008) Reduction of trichloroethylene and nitrate by zero-valent iron with peat. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 43:144–153

    Article  CAS  Google Scholar 

  • Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry, 5th edn. Prentice Hall, London

    Google Scholar 

  • Mitra S, Gupta SK (2013) Biodegradation of tetrachloroethylene-rich synthetic wastewater in anaerobic hybrid reactor. Desalin Water Treat 51:4506–4513

    Article  CAS  Google Scholar 

  • OEHHA (2001) Public health goal for tetrachloroethylene in drinking water. Office of Environmental Health Hazard Assessment

  • Ohandja D-G, Stuckey DC (2010) Effect of perchloroethylene (PCE) and hydraulic shock loads on a membrane-aerated biofilm reactor (MABR) biodegrading PCE. J Chem Technol Biotechnol 85:294–301

    CAS  Google Scholar 

  • Ohandja DG, Stuckey DC (2007) Biodegradation of PCE in a hybrid membrane aerated biofilm reactor. J Environ Eng 133:20–27

    Article  CAS  Google Scholar 

  • Ouattara AS, Assih EA, Thierry S, Cayol JL, Labat M, Monroy O, Macarie H (2003) Bosea minatitlanensis sp nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int J Syst Evol Microbiol 53:1247–1251

    Article  CAS  Google Scholar 

  • Paulu C, Aschengrau A, Ozonoff D (1999) Tetrachloroethylene-contaminated drinking water in Massachusetts and the risk of colon-rectum, lung, and other cancers. Environ Health Perspect 107:265–271

    Article  CAS  Google Scholar 

  • Pavlostathis S, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment. Water Sci Technol 24:35–59

    CAS  Google Scholar 

  • Peng J, Wan A (1997) Measurement of Henry’s constants of high-volatility organic compounds using a headspace autosampler. Environ Sci Technol 31:2998–3003

    Article  CAS  Google Scholar 

  • Poggi-Varaldo HM, Moreno-Medina CU, Galíndez-Mayer J, Ponce-Noyola MT, Esparza-García FJ, Ríos-Leal E, Juarez-Ramírez C, Rinderknecht-Seijas NF (2009) A review of zero-valent metals and biological treatment for the removal of chlorinated aliphatic compounds. New Biotechnol 25:S255–S256

    Article  Google Scholar 

  • Puhakka JA, Jarvinen KT, Langwaldt JH, Melin ES, Mannisto MK, Salminen JM, Sjolund MT (2000) On-site and in situ bioremediation of wood-preservative contaminated groundwater. Water Sci Technol 42:371–376

    CAS  Google Scholar 

  • Reyna-Velarde R, Rios-Leal E, Thalasso F, Foresti E, Rinderkenecht-Seijas N, Poggi-Varaldo HM (2005) Comparison of two fluidized-bed reactors with simultaneous electron acceptors for the treatment of a perchloroethylene-contaminated effluent. In: Alleman BC, Kelley ME (eds) In situ and on-site bioremediation—2005. Proceedings of the Eighth International In Situ and on-Site Bioremediation Symposium. Batelle Press, Columbus, OH paper J04

    Google Scholar 

  • Rivett MO, Chapman SW, Alllen-King RM, Feenstra S, Cherry JA (2006) Pump-and-treat remediation of chlorinated solvent contamination at a controlled field-experiment site. Environ Sci Technol 40:6770–6781

    Article  CAS  Google Scholar 

  • Rojas MDA, Netto AO, Zaiat M (2008) Specific methanogenic activity in an anaerobic-aerobic reactor applied to the treatment of domestic residual water. Interciencia 33:284–289

    Google Scholar 

  • Rosenthal H, Adrian L, Steiof M (2004) Dechlorination of PCE in the presence of Fe-0 enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere 55:661–669

    Article  CAS  Google Scholar 

  • Rouquerol F, Rouquerol J, Sing K (1999) Chapter 9—adsorption by Active Carbons. In: Rouquerol F, Rouquerol J, Sing K (eds) Adsorption by powders and porous solids. Academic Press, London, pp. 237–285

    Chapter  Google Scholar 

  • Sánchez M, Mosquera-Corral A, Méndez R, Lema JM (2000) Simple methods for the determination of the denitrifying activity of sludges. Bioresour Technol 75:1–6

    Article  Google Scholar 

  • Sawyer C, MacCarty P, Parkin G (2003) Chemistry for environmental engineering and science. MacGraw-Hill, New York

    Google Scholar 

  • Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246

    Article  CAS  Google Scholar 

  • Shin MC, Choi HD, Kim DH, Baek K (2008) Effect of surfactant on reductive dechlorination of trichloroethylene by zero-valent iron. Desalination 223:299–307

    Article  CAS  Google Scholar 

  • Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73

    Article  CAS  Google Scholar 

  • Sorensen HA, Ahring BK (1993) Measurements of the specific methanogenic activity of anaerobic digestor biomas. Appl Microbiol Biotechnol 40:427–431

    Article  Google Scholar 

  • Sone N, Hägerhäll C, Sakamoto J (2004) Aerobic respiration in the gram-positive bacteria. In: Zannoni D (ed) Respiration in archaea and bacteria: diversity of prokaryotic respiratory systems. Springer, Netherlands, Dordrecht, pp. 35–62

    Chapter  Google Scholar 

  • Sponza DT (2003) Toxicity and treatability of carbontetrachloride and tetrachloroethylene in anaerobic batch cultures. Int Biodeterior Biodegrad 51:119–127

    Article  CAS  Google Scholar 

  • Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Loffler FE (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp nov. Appl Environ Microbiol 69:2964–2974

    Article  CAS  Google Scholar 

  • Terzenbach DP, Blaut M (1994) Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123:213–218

    Article  CAS  Google Scholar 

  • Tiehm A, Schmidt KR (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Curr Opin Biotechnol 22:415–421

    Article  CAS  Google Scholar 

  • Van Nooten T, Lieben F, Dries J, Pirard E, Springael D, Bastiaens L (2007) Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions. Environ Sci Technol 41:5724–5730

    Article  CAS  Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL (1987) ES critical reviews: transformations of halogenated aliphatic compounds. Environ Sci Technol 21:722–736

    Article  CAS  Google Scholar 

  • Volpe A, Del Moro G, Rossetti S, Tandoi V, Lopez A (2007) Remediation of PCE-contaminated groundwater from an industrial site in southern Italy: a laboratory-scale study. Process Biochem 42:1498–1505

    Article  CAS  Google Scholar 

  • Wikström P, Andersson A-C, Forsman M (1999) Biomonitoring complex microbial communities using random amplified polymorphic DNA and principal component analysis. FEMS Microbiol Ecol 28:131–139

    Article  Google Scholar 

  • Worm P, Müller N, Plugge CM, Stams AJM, Schink B (2010) Syntrophy in methanogenic degradation. In: HPJ H (ed) (Endo) symbiotic methanogenic archaea. Springer, Berlin, Heidelberg, pp. 143–173

    Chapter  Google Scholar 

  • Yan E, LaFreniere L, Roe C (2010) Argonne National Laboratory examines an integrated carbon and ZVI source for in situ chemical reduction. Technol News Trends:1–3

  • Zárate-Segura PB, Rios-Leal E, Esparza-Garcia F, Garcia-Mena J, Sanz JL, Zaiat M, Poggi-Varaldo HM (2004) Perchloroethylene removal in two anaerobic continuous systems. Interciencia 29:562–567

    Google Scholar 

  • Zolla V, Sethi R, Di Molfetta A (2007) Performance assessment and monitoring of a permeable reactive barrier for the remediation of a contaminated site. Am J Environ Sci 3:158–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the editors and anonymous reviewers of ESPR for their insightful comments that improved the manuscript. The authors also gratefully acknowledge CONACYT for graduate scholarships to CUM-M and LMB-D, and Stat-Ease, Inc. (Minneapolis, MN, USA) for a free license of Design-Expert v 8.0 to HMP-V. The excellent technical help of Mr. Rafael Hernández-Vera (GBAER, CINVESTAV del IPN) is appreciated. CONACYT granted an infrastructure Project 188281 to one of the authors (HMP-V). CINVESTAV del IPN partially funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector M. Poggi-Varaldo.

Additional information

Responsible editor: Angeles Blanco

Electronic supplementary material

ESM 1

(DOCX 979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Medina, C.U., Poggi-Varaldo, H.M., Breton-Deval, L. et al. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes. Environ Sci Pollut Res 24, 25534–25549 (2017). https://doi.org/10.1007/s11356-016-7275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7275-z

Keywords

Navigation