Skip to main content
Log in

Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work focuses on the scale-up of electrochemical and photoelectrochemical oxidation processes with diamond anodes for the removal of organic pollutants and disinfection of treated urban wastewater, two of the most important parameters for the reclaiming of wastewater. The removal of organics was studied with actual biologically treated urban wastewater intensified with 100 mg dm−3 of caffeine, added as a trace organic pollutant. The disinfection was also studied with biologically treated urban wastewater, and Escherichia coli was used to monitor the efficiency of the process. Results obtained with a single DiaCell® 101 were compared with those obtained with a single-stack DiaCell® 1001 and with a pilot plant made up of five of these stacks. Results obtained demonstrate that scale-up is not a simple but a very complex process, in which not only the electrode and the irradiation dose are important but also mass transfer conditions. Enhanced mass transport conditions have a determining and very positive effect on the removal of organics and a negative effect on the disinfection. Likewise, ultraviolet (UV) irradiation affects in a different way in the different setups used, having a great influence on the removal of complex organics and on the speciation of oxidants produced during disinfection. This works helps to understand the key differences observed in the scale-up, and it is a first approach for future works focused on the real application of conductive diamond electrochemical oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anglada Á, Urtiaga AM, Ortiz I (2010) Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate. J Hazard Mater 181:729–735

    Article  CAS  Google Scholar 

  • APHA-AWWA-WPCF (1998) Standard methods for the examination of water and wastewater, Washington, DC, 10161 pp

  • Bergmann H, Koparal AS (2005) The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection. Electrochim Acta 50:5218–5228

    Article  CAS  Google Scholar 

  • Bergmann H (2010) A discussion on diamond electrodes for water disinfection electrolysis. GWF, Wasser - Abwasser 151:604–613

    CAS  Google Scholar 

  • Cano A, Cañizares P, Barrera C, Sáez C, Rodrigo MA (2011) Use of low current densities in electrolyses with conductive-diamond electrochemical—oxidation to disinfect treated wastewaters for reuse. Electrochem Commun 13:1268–1270

    Article  CAS  Google Scholar 

  • Cano A, Cañizares P, Barrera-Díaz C, Sáez C, Rodrigo MA (2012): Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters Chem Eng J 211–212, 463–469

  • Catanho M, Malpass GRP, Motheo AJ (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Appl Catal B Environ 62:193–200

    Article  CAS  Google Scholar 

  • Chan PY, Gamal El-Din M, Bolton JR (2012) A solar-driven UV/chlorine advanced oxidation process. Water Res 46:5672–5682

    Article  CAS  Google Scholar 

  • Cotillas S, Llanos J, Cañizares P, Mateo S, Rodrigo MA (2013) Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. Water Res 47:1741–1750

    Article  CAS  Google Scholar 

  • Cotillas S, Llanos J, Rodrigo MA, Cañizares P (2015) Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters. Appl Catal B Environ 162:252–259

    Article  CAS  Google Scholar 

  • Cotillas S, de Vidales MJM, Llanos J, Sáez C, Cañizares P, Rodrigo MA (2016) Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. J Hazard Mater

  • de Freitas AM, Sirtori C, Peralta-Zamora P (2011) Photoelectrocatalytic degradation of camphor on TiO2/RuO2 electrodes. Environ Chem Lett 9:97–102

    Article  CAS  Google Scholar 

  • de Vidales MJM, Sáez C, Pérez JF, Cotillas S, Llanos J, Cañizares P, Rodrigo MA (2015) Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. J Appl Electrochem 45:799–808

    Article  Google Scholar 

  • El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597

    Article  CAS  Google Scholar 

  • Freytag H (1959) Zur Bestimmung von Hypochlorit, Chlorid und Chlorat in Chlorkalk. Z Anal Chem 171:458–458

    Article  Google Scholar 

  • Goeting CH, Marken F, Gutiérrez-Sosa A, Compton RG, Foord JS (1999) Boron-doped diamond electrodes: growth, surface characterisation and sono-electrochemical applications. New Diamond Front Carbon Technol 9:207–228

    CAS  Google Scholar 

  • Henquin ER, Colli AN, Bergmann MEH, Bisang JM (2013) Characterization of a bipolar parallel-plate electrochemical reactor for water disinfection using low conductivity drinking water. Chem Eng Process 65:45–52

    Article  CAS  Google Scholar 

  • Hurwitz G, Pornwongthong P, Mahendra S, Hoek EMV (2014) Degradation of phenol by synergistic chlorine-enhanced photo-assisted electrochemical oxidation. Chem Eng J 240:235–243

    Article  CAS  Google Scholar 

  • Indermuhle C, Martín de Vidales MJ, Sáez C, Robles J, Cañizares P, García-Reyes JF, Molina-Díaz A, Comninellis C, Rodrigo MA (2013) Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere 93:1720–1725

    Article  CAS  Google Scholar 

  • Jacob J, Cherian J (2013) Review of environmental and human exposure to persistent organic pollutants. Asian Soc Sci 9:107–120

    Article  Google Scholar 

  • Khataee A, Safarpour M, Vahid B, Akbarpour A (2014) Degrading a mixture of three textile dyes using photo-assisted electrochemical process with BDD anode and O2-diffusion cathode. Environ Sci Pollut Res 21:8543–8554

    Article  CAS  Google Scholar 

  • Lacasa E, Tsolaki E, Sbokou Z, Andres Rodrigo M, Mantzavinos D, Diamadopoulos E (2013) Electrochemical disinfection of simulated ballast water on conductive diamond electrodes. Chem Eng J 223:516–523

    Article  CAS  Google Scholar 

  • Llanos J, Cotillas S, Cañizares P, Rodrigo MA (2015) Conductive diamond sono-electrochemical disinfection (CDSED) for municipal wastewater reclamation. Ultrason Sonochem 22:493–498

    Article  CAS  Google Scholar 

  • Lovett R (2005) Demon drink. New Sci 187:38–41

    Google Scholar 

  • Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83

    Article  CAS  Google Scholar 

  • Martín de Vidales MJ, Robles-Molina J, Domínguez-Romero JC, Cañizares P, Sáez C, Molina-Díaz A, Rodrigo MA (2012a) Removal of sulfamethoxazole from waters and wastewaters by conductive-diamond electrochemical oxidation. J Chem Technol Biotechnol 87:1441–1449

    Article  Google Scholar 

  • Martín de Vidales MJ, Sáez C, Cañizares P, Rodrigo MA (2012b) Electrolysis of progesterone with conductive-diamond electrodes. J Chem Technol Biotechnol 87:1173–1178

    Article  Google Scholar 

  • Martinez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145

    Article  CAS  Google Scholar 

  • Oliver BG, Carey JH (1977) Photochemical production of chlorinated organics in aqueous solutions containing chlorine. Environ Sci Technol 11:893–895

    Article  CAS  Google Scholar 

  • Osugi ME, Umbuzeiro GA, Anderson MA, Zanoni MVB (2005) Degradation of metallophtalocyanine dye by combined processes of electrochemistry and photoelectrochemistry. Electrochim Acta 50:5261–5269

    Article  CAS  Google Scholar 

  • Oturan MA, Aaron JJ (2013) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol in press

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  • Rajab M, Heim C, Letzel T, Drewes JE, Helmreich B (2015) Electrochemical disinfection using boron-doped diamond electrode—the synergetic effects of in situ ozone and free chlorine generation. Chemosphere 121:47–53

    Article  CAS  Google Scholar 

  • Rodrigo M, Michaud P, Duo I, Panizza M, Cerisola G, Comninellis C (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J Electrochem Soc 148:D60–D64

    Article  CAS  Google Scholar 

  • Rodrigo MA, Cañizares P, Buitrón C, Sáez C (2010) Electrochemical technologies for the regeneration of urban wastewaters. Electrochim Acta 55:8160–8164

    Article  CAS  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res

  • Socha A, Sochocka E, Podsiadły R, Sokołowska J (2007) Electrochemical and photoelectrochemical treatment of CI acid violet 1. Dyes Pigments 73:390–393

    Article  CAS  Google Scholar 

  • Souza F, Saéz C, Lanza M, Cañizares P, Rodrigo MA (2015a): Towards the scale-up of electrolysis with diamond anodes: effect of stacking on the electrochemical oxidation of 2,4 D J Chem Technol Biotechnol, n/a-n/a

  • Souza FL, Saez C, Canizares P, Motheo AJ, Andres Rodrigo M (2014a) Using a new photo-reactor to promote conductive-diamond electrochemical oxidation of dimethyl phthalate. J Chem Technol Biotechnol 89:1251–1258

    Article  CAS  Google Scholar 

  • Souza FL, Aquino JM, Miwa DW, Rodrigo MA, Motheo AJ (2014b) Photo-assisted electrochemical degradation of the dimethyl phthalate ester on DSA® electrode. J Environ Chem Eng 2:811–818

    Article  CAS  Google Scholar 

  • Souza FL, Saez C, Canizares P, Motheo AJ, Rodrigo MA (2014c) Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Appl Catal B Environ 144:121–128

    Article  CAS  Google Scholar 

  • Souza FL, Saéz C, Lanza MRV, Cañizares P, Rodrigo MA (2015b) Is it worth the use of bipolar electrodes in electrolytic wastewater treatment processes? Chem Eng J 264:310–315

    Article  CAS  Google Scholar 

  • Tröster I, Fryda M, Herrmann D, Schäfer L, Hänni W, Perret A, Blaschke M, Kraft A, Stadelmann M (2002) Electrochemical advanced oxidation process for water treatment using DiaChem® electrodes. Diam Relat Mater 11:640–645

    Article  Google Scholar 

  • Urtiaga A, Gómez P, Arruti A, Ortiz I (2014) Electrochemical removal of tetrahydrofuran from industrial wastewaters: anode selection and process scale-up. J Chem Technol Biotechnol 89:1243–1250

    Article  CAS  Google Scholar 

  • Vidales MJMD, Barba S, Sáez C, Cañizares P, Rodrigo MA (2014) Coupling ultraviolet light and ultrasound irradiation with conductive-diamond electrochemical oxidation for the removal of progesterone. Electrochim Acta 140:20–26

    Article  CAS  Google Scholar 

  • Wilpert AV (1957) Über die analyse von Hypochlorit und Chlorit in einer Lösung. Z Anal Chem 155:378–378

    Article  Google Scholar 

  • Zanin H, Teófilo RF, Peterlevitz AC, Oliveira U, De Paiva JC, Ceragioli HJ, Reis EL, Baranauskas V (2013) Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution. J Appl Electrochem 43:323–330

    Article  CAS  Google Scholar 

  • Zhu X, Ni J, Wei J, Xing X, Li H, Jiang Y (2010) Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode. J Hazard Mater 184:493–498

    Article  CAS  Google Scholar 

  • Zhu X, Ni J, Wei J, Chen P (2011) Scale-up of B-doped diamond anode system for electrochemical oxidation of phenol simulated wastewater in batch mode. Electrochim Acta 56:9439–9447

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from the EU and Spanish Government through the MINECO Project CTM2013-45612-R, FEDER 2007-2013 PP201010 (Planta Piloto de Estación de Estación de Regeneración de Aguas Depuradas) and INNOCAMPUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Rodrigo.

Additional information

Responsible editor: Bingcai Pan

Highlights

- Scale-up of conductive-diamond electrochemical oxidation is not an easy procedure.

- For scaling-up, mass transfer is at least as important as electrode material and UV irradiation dosage.

- UV irradiation coupled to electrolysis favors the oxidation of aromatic organics.

- Photoactivation of disinfectants improves the disinfection process at pilot plant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín de Vidales, M.J., Cotillas, S., Perez-Serrano, J.F. et al. Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Environ Sci Pollut Res 23, 19713–19722 (2016). https://doi.org/10.1007/s11356-016-7189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7189-9

Keywords

Navigation