Skip to main content
Log in

Enantioselective metabolism and toxic effects of metalaxyl on primary hepatocytes from rat

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Enantiomers of chiral compounds often exhibit enantioselective adverse effects and biochemical processes in non-target organisms. In this study, enantioselective metabolism and toxic effects of metalaxyl enantiomers on primary rat hepatocytes were investigated. Stereoselectivity was observed on both degradation of metalaxyl and formation of metabolites. (−)-R-metalaxyl eliminated faster than (+)-S-metalaxyl, while the hydroxylmetalaxyl, demethylmetalaxyl, and didemethylmetalaxyl metabolites derived from 50-μM (+)-S-metalaxyl after 24 h of incubation were approximately 1.57, 1.43, and 1.86 times more than that of (−)-R-metalaxyl, respectively. According to the methyl tetrazolium (MTT) assay, the EC50 values (24 h) for rac-, (+)-S-, and (−)-R-metalaxyl were 1788.22, 2066.73, and 2263.71 μM, respectively. An accordant enantioselective effect on oxidative stress suggested that the enantioselective cytotoxicity induced by metalaxyl enantiomers may partly contribute to enantioselective oxidative damage and mitochondrial dysfunction. Such results could be of great importance for credible environmental and toxicological risk assessment of metalaxyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10:RA141–RA147

    CAS  Google Scholar 

  • Al-Amoudi WM (2012) Haematological and biochemical effects of metalaxyl fungicide on albino mice. Am J Biochem 2:62–66

    Article  CAS  Google Scholar 

  • Ali I, Aboul-Enein HY, Ghanem A (2005) Enantioselective toxicity and carcinogenesis. Curr Pharm Anal 1:109–125

    Article  CAS  Google Scholar 

  • Armstrong DW, Reid GL 3rd, Hilton ML, Chang CD (1993) Relevance of enantiomeric separations in environmental science. Environ Pollut 79:51–58

    Article  CAS  Google Scholar 

  • Bermúdez-Couso A, Fernández-Calviño D, Álvarez-Enjo MA, Simal-Gándara J, Nóvoa-Muñoz JC, Arias-Estévez M (2013) Pollution of surface waters by metalaxyl and nitrate from non-point sources. Sci Total Environ 461:282–289

    Article  Google Scholar 

  • Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47:236–242

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buerge II, Poiger T, Muller MD, Buser HR (2003) Enantioselective degradation of metalaxyl in soils: chiral preference changes with soil pH. Environ Sci Technol 37:2668–2674

    Article  CAS  Google Scholar 

  • Buser HR, Muller MD, Poiger T, Balmer ME (2002) Environmental behavior of the chiral acetamide pesticide metalaxyl: enantioselective degradation and chiral stability in soil. Environ Sci Technol 36:221–226

    Article  CAS  Google Scholar 

  • Chen S, Liu W (2008) Toxicity of chiral pesticide Rac-metalaxyl and R-metalaxyl to Daphnia magna. Bull Environ Contam Toxicol 81:531–534

    Article  CAS  Google Scholar 

  • Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177

    Article  CAS  Google Scholar 

  • Gomez-Lechon MJ, Donato MT, Castell JV, Jover R (2003) Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 4:292–312

    Article  CAS  Google Scholar 

  • Gomez-Lechon MJ, Castell JV, Donato MT (2007) Hepatocytes—the choice to investigate drug metabolism and toxicity in man: in vitro variability as a reflection of in vivo. Chem Biol Interact 168:30–50

    Article  CAS  Google Scholar 

  • Hambock H (1981) Metabolic pathways of CGA 48988 in the rat. Project unpublished Report 31:81

    Google Scholar 

  • Hegeman WJ, Laane R (2001) Enantiomeric enrichment of chiral pesticides in the environment. Rev Environ Contam Toxicol 173:85–116

    CAS  Google Scholar 

  • Hrelia P, Maffei F, Fimognari C, Vigagni F, Cantelli-Forti G (1996) Cytogenetic effects of metalaxyl on human and animal chromosomes. Mutat Res 369:81–86

    Article  CAS  Google Scholar 

  • Hu F, Li L, Wang C, Zhang Q, Zhang X, Zhao M (2010) Enantioselective induction of oxidative stress by permethrin in rat adrenal pheochromocytoma (PC12) cells. Environ Toxicol Chem 29:683–690

    Article  CAS  Google Scholar 

  • Keith LH, Walker M (1992): EPA’s pesticide fact sheet database. CRC Press, Boca Raton

  • Kong Q, Zhu L, Shen X (2010) The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions. J Hazard Mater 178:282–286

    Article  CAS  Google Scholar 

  • Kumar GN, Surapaneni S (2001) Role of drug metabolism in drug discovery and development. Med Res Rev 21:397–411

    Article  CAS  Google Scholar 

  • Lamfon HA (2011) Protective effect of ginger (Zingiber officinale) against metalaxyl induced hepatotoxicity in albino mice. J Am Sci 7:1093–1100

  • Li K, Qin F, Jing L, Li F, Guo X (2013) In vivo and in vitro metabolism of a novel beta2-adrenoceptor agonist, trantinterol: metabolites isolation and identification by LC-MS/MS and NMR. Anal Bioanal Chem 405:2619–2634

    Article  CAS  Google Scholar 

  • Liu W, Gan J, Schlenk D, Jury WA (2005) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci U S A 102:701–706

    Article  CAS  Google Scholar 

  • Qiu J, Wang QX, Wang P, Jia GF, Li JL, Zhou ZQ (2005) Enantioselective degradation kinetics of metalaxyl in rabbits. Pestic Biochem Physiol 83:1–8

    Article  CAS  Google Scholar 

  • Sahoo A, Samanta L, Chainy GB (2000) Mediation of oxidative stress in HCH-induced neurotoxicity in rat. Arch Environ Contam Toxicol 39:7–12

    Article  CAS  Google Scholar 

  • Wang L, Liu W, Yang C, Pan Z, Gan J, Xu C, Zhao M, Schlenk D (2007) Enantioselectivity in estrogenic potential and uptake of bifenthrin. Environ Sci Technol 41:6124–6128

    Article  CAS  Google Scholar 

  • Wang C, Li Z, Zhang Q, Zhao M, Liu W (2013a) Enantioselective induction of cytotoxicity by o, p’-DDD in PC12 cells: implications of chirality in risk assessment of POPs metabolites. Environ Sci Technol 47:3909–3917

    Article  CAS  Google Scholar 

  • Wang X, Diao J, Shen Z, Zhu W, Zhang P, Zhou Z (2013b) Stereoselective toxicity and metabolism of lactofen in primary hepatocytes from rat. Chirality 25:743–750

    Article  CAS  Google Scholar 

  • Wang X, Qiu J, Xu P, Zhang P, Wang Y, Zhou Z, Zhu W (2015) Rapid metabolite discovery, identification and accurate comparison of the stereoselective metabolism of metalaxyl in rat hepatic microsomes. J Agric Food Chem 63:754–760

  • Xu P, Diao J, Liu D, Zhou Z (2011) Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere 83:1074–1079

    Article  CAS  Google Scholar 

  • Ye J, Zhao M, Liu J, Liu W (2010) Enantioselectivity in environmental risk assessment of modern chiral pesticides. Environ Pollut 158:2371–2383

    Article  CAS  Google Scholar 

  • Zadra C, Marucchini C, Zazzerini A (2002) Behavior of metalaxyl and its pure R-enantiomer in sunflower plants (Helianthus annus). J Agric Food Chem 50:5373–5377

    Article  CAS  Google Scholar 

  • Zhang P, Shen Z, Xu X, Zhu W, Dang Z, Wang X, Liu D, Zhou Z (2012) Stereoselective degradation of metalaxyl and its enantiomers in rat and rabbit hepatic microsomes in vitro. Xenobiotica 42:580–586

    Article  CAS  Google Scholar 

  • Zhu W, Dang Z, Qiu J, Liu Y, Lv C, Diao J, Zhou Z (2009) Species differences for stereoselective metabolism of ethofumesate and its enantiomers in vitro. Xenobiotica 39:649–655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (21207158, 21337005) and Chinese Universities Scientific Fund (2012RC026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhou.

Ethics declarations

All animal experiments were performed in accordance with the current Chinese legislation and approved by the independent animal ethical committee at China Agricultural University.

Additional information

Responsible editor: Philippe Garrigues

Xinru Wang and Wentao Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Cytotoxicity results of (A)rac-metalaxyl, (B) (+)-S-metalaxyl,(C) (-)-R-metalaxyl after 12h exposure and (D)rac-metalaxyl, (E) (+)-S-metalaxyl,(F) (-)-R-metalaxyl after 24h exposure (DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhu, W., Qiu, J. et al. Enantioselective metabolism and toxic effects of metalaxyl on primary hepatocytes from rat. Environ Sci Pollut Res 23, 18649–18656 (2016). https://doi.org/10.1007/s11356-016-6797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6797-8

Keywords

Navigation