Skip to main content
Log in

Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to high durability, cheap cost, and ease of manufacture, 311 million tons of plastic-based products are manufactured around the globe per annum. The slow/least rate of plastic degradation leads to generation of million tons of plastic waste per annum, which is of great environmental concern. Of the total plastic waste generated, polythene shared about 64 %. Various methods are available in the literature to tackle with the plastic waste, and biodegradation is considered as the most accepted, eco-friendly, and cost-effective method of polythene waste disposal. In the present study, an attempt has been made to isolate, screen, and characterize the most efficient polythene degrading bacteria by using rhizosphere soil of Avicennia marina as a landmark. From 12 localities along the west coast of India, a total of 123 bacterial isolates were recorded. Maximum percent weight loss (% WL; 21.87 ± 6.37 %) was recorded with VASB14 at pH 3.5 after 2 months of shaking at room temperature. Maximum percent weight gain (13.87 ± 3.6 %) was reported with MANGB5 at pH 7. Maximum percent loss in tensile strength (% loss in TS; 87.50 ± 4.8 %) was documented with VASB1 at pH 9.5. The results based on the % loss in TS were only reproducible. Further, the level of degradation was confirmed by scanning electron microscopic (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. In SEM analysis, scions/crakes were found on the surface of the degraded polythene, and mass of bacterial cell was also recorded on the weight-gained polythene strips. Maximum reduction in carbonyl index (4.14 %) was recorded in untreated polythene strip with Lysinibacillus fusiformis strain VASB14/WL. Based on 16S ribosomal RNA (rRNA) gene sequence homology, the most efficient polythene degrading bacteria were identified as L. fusiformis strainVASB14/WL and Bacillus cereus strain VASB1/TS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrusci C, Pablos JL, Corrales T, López-Marín J, Marína I, Catalina F (2011) Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int Biodeter Biodegr 65:451–459. doi:10.1016/j.ibiod.2010.10.012

    Article  CAS  Google Scholar 

  • Albertsson A-C, Karlsson S (1988) The three stages in degradation of polymers-polyethylene as a model substance. J Appl Polym Sci 35:1289. doi:10.1002/app.1988.070350515

    Article  CAS  Google Scholar 

  • Albertsson A-C, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87

    Article  CAS  Google Scholar 

  • Albertsson A-C, Banhidi ZG (1980) Microbial and oxidative effects in degradation of polyethene. J Appl Polym Sci 25:655–1671

    Article  Google Scholar 

  • Albertsson A-C, Barenstedt C, Karlsson S (1994) Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym 45:97–103

    Article  CAS  Google Scholar 

  • Aneja KR (2003) Experiments in microbiology, plant pathology and biotechnology, 4th edn. New Age International, New Delhi

    Google Scholar 

  • Artetxe M, Lopez G, Amutio M, Elordi G, Bilbao J, Olazar M (2013) Cracking of HDPE pyrolysis waxes on HZSM-5 catalysts of different acidity. Ind Eng Chem Res. doi:10.1021/ie4014869

    Google Scholar 

  • Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  • ASTM D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken. doi:10.1520/D0882-12

    Google Scholar 

  • Aswale P (2010) Studies on bio-degradation of polythene, Ph. D. thesis, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

  • Aswale P, Ade A (2008) Assessment of the biodegradation of polythene. Bioinfolet 5:239

    Google Scholar 

  • Aswale PN, Ade AB (2009) Effect of pH on biodegradation of polythene by Serretia marscence. The Ecotech 1:152–153

    Google Scholar 

  • Azzarello MY, Van Vleet ES (1987) Marine birds and plastic pollution. Mar Ecol Prog Ser 37:230–295

    Article  Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Kannan VR (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211. doi:10.1111/j.1472-765X.2010.02883.x

    CAS  Google Scholar 

  • Bhandare PS, Lee BK, Krishnan K (1997) Study of pyrolysis and incineration of disposable plastics using combined TG/FR-IR technique. J Thermal Anal 49:361–366

    Article  CAS  Google Scholar 

  • Chandra R, Rustgi R (1997) Biodegradation of maleated linear low-density polyethylene and starch blends. Polym Degrad Stabil 56:185–202

    Article  CAS  Google Scholar 

  • Chaturvedi S, Chandra R, Rai V (2008) Multiple antibiotic resistance patterns of rhizospheric bacteria isolated from Phragmites australis growing in constructed wetland for distillery effluent treatment. J Environ Biol 29(1):117–124

    CAS  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Marine Poll Bull 44:842–52

    Article  CAS  Google Scholar 

  • Dhami NK, Mukherjee A, Reddy MS (2013) Viability of calcifying bacterial formulations in fly ash for applications in building materials. J Ind Microbiol Biotechnol 40:1403–1413. doi:10.1007/s10295-013-1338-7

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • El-Hussein AA, Elsalahi RH, Osman AG, Sherif AM, El-Siddig MA (2014) Isolation and 16S rRNA-Based Identification of Benomyl-Degrading Bacteria. Br Biotechnol J 4(6):670–683

    Article  CAS  Google Scholar 

  • El-Shafei HA, El-Nasser NHA, Kansoh AL, Ali AM (1998) Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym Degrad Stab 62:361–365

    Article  CAS  Google Scholar 

  • Esmaeili A, Pourbabaee AA, Alikhani HA, Shabani F, Esmaeili E (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS ONE 8(9):e71720. doi:10.1371/journal.pone.0071720

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault J-P, Pitteri S, Samuel G, Pichon G, Lemaire J, Delort A-M (2009) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95:1011–1021. doi:10.1016/j.polymdegradstab.2010.03.009

    Article  Google Scholar 

  • Fuhs GW (1961) Der mikrobielle Abbau von Kohlenwasserstoffen. Arch Microbiol 39:374–422

    CAS  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Jamaluddin AMK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol. doi:10.1155/2012/325907

    Google Scholar 

  • Giam CS, Chan HS, Neff GS, Atlas EL (1978) Phthalate ester plasticizers: a new class of marine pollutant. Science 199:419–420

    Article  CAS  Google Scholar 

  • Hadad D, Geresh S, Sivan (2005) A Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100. doi:10.1111/j.1365-2672.2005.02553.x

  • Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Poll Bull 77:100–106. doi:10.1016/j.marpolbul.2013.10.025

    Article  CAS  Google Scholar 

  • Ibiene AA, Stanley HO, Immanuel OM (2013) Biodegradation of polyethylene by Bacillus sp. indigenous to the Niger delta mangrove swamp. Nig J Biotech 26:68–79

    Google Scholar 

  • Iiyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44:222–229

    Article  CAS  Google Scholar 

  • Jakubowicz I (2003) Evaluation of degradability of biodegradable polyethylene (PE). Polym Degrad Stabil 80:39–43

    Article  CAS  Google Scholar 

  • Jen-hou* L, Schwartz A (1961) Zum Verhalten von bakteriengemischen gegentiber polyfithylen verschiedenen mittleren Molekulargewichtss. Kunststoffe 51:317–320

    Google Scholar 

  • Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51(3):629–634

    CAS  Google Scholar 

  • Kawai F, Watanabe M, Shibata M, Yokoyama S, Sudate Y, Hayashi S (2004) Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polym Degrad Stab 86:105–114

    Article  CAS  Google Scholar 

  • Kelly CT, White JR (1997) Photodegradation of polyethylene and polypropylene at slow strain-rate. Polym Degrad Stab 56:367–383

    Article  CAS  Google Scholar 

  • Kumar S, Hatha AAM, Christi KS (2007) Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev Biol Trop 55:777–786

    Google Scholar 

  • Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbio doi:10.1007/s12088-012-0250-6

  • Laist DW (1987) Overview of the biological effects of lost and discarded plastic debris in the marine environment. Marine Poll Bull 18(6B):319–326

    Article  Google Scholar 

  • Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  Google Scholar 

  • Li X, Zeng Z, Chen Y, Xu Y (2004) Determination of phthalate acid esters plasticizers in plastic by ultrasonic solvent extraction combined with solid phase micro extraction using calix [4] arene fiber. Talanta 63:1013–1019

    Article  CAS  Google Scholar 

  • Nanda S, Sahu S, Abraham J (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manage 14:57–60

  • Nowak B, Paja KJ, Drozd-Bratkowicz M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeterior Biodegrad 65:757–767

    Article  CAS  Google Scholar 

  • Nwachukwu S, Obidi O, Odocha C (2010) Occurrence and recalcitrance of polyethylene bag waste in Nigerian soils. Afr J Biotechnol 9:6096–6104

    Google Scholar 

  • Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci 56:1789–1796

    Article  CAS  Google Scholar 

  • Pometto-III AL, Lee B, Johnson KE (1992) Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol 58:731–733

    Google Scholar 

  • Potts JE (1978) Biodegradation. In: Jelinek HHG (ed) Aspects of Degradation and Stabilization of Polymers. Elsevier, New York, pp 617–658

    Google Scholar 

  • Pramila R, Ramesh KV (2011) Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water- a SEM analysis. Afr J Microbiol Res 5:5013–5018

    Article  CAS  Google Scholar 

  • Pramila R, Padmavathy K, Ramesh KV, Mahalakshmi K (2012) Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis—potential candidates for biodegradation of low density polyethylene (LDPE). African Journal of Bacteriology Research 4(1):9–14. doi:10.5897/JBR12.003

    CAS  Google Scholar 

  • Priyanka N, Archana T (2011) Biodegradability of polythene and plastic by the help of microorganism: a way for brighter future. J Environment Analytic Toxicol 1:111

    Article  Google Scholar 

  • Qureshi FS, Amin MB, Maadhah AG, Hamid SH (1990) Weather induced degradation of linear low density polyethylene: mechanical properties. J Polym Eng 9:67–84

    Article  CAS  Google Scholar 

  • Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Indus Res 1(6), 313-316.

  • Rajeswari K, Subashkumar R, Vijayaraman K (2014) Degradation of textile dyes by isolated Lysinibacillussphaericus strain RSV-1 and Stenotrophomonas maltophilia strain RSV-2 and toxicity assessment of degraded product. J Environ Anal Toxicol 4:222. doi:10.4172/2161-0525.1000222

    Google Scholar 

  • Restrepo-Flórez J-M, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene—a review. Int Biodeterior Biodegradation 88:83–90

    Article  Google Scholar 

  • Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93:1917–1922

    Article  CAS  Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Nu´n˜ez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger L-A, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microb 77(17):6076–6084. doi:10.1128/AEM.00521-11

    Article  CAS  Google Scholar 

  • Rutkowska M, Heimowska A, Krasowska K, Janik H (2002) Biodegradability of polyethylene starch blends in sea water. Pol J Environ Stud 11:267–274

    CAS  Google Scholar 

  • Sangale MK, Shahnawaz M, Ade AB (2012) A review on biodegradation of polythene: the microbial approach. J Bioremed Biodeg 3(10):1–9. doi:10.4172/2155-6199.1000164

  • Santhoskumar AU, Devarajan S, Palanivelu K, Romauld SI (2014) A new additive formulation to improve biodegradation of low density polyethylene. Int J ChemTech Res 6(9):4194–4200

    CAS  Google Scholar 

  • Sarker M (2011) Converting waste plastic to hydrocarbon fuel materials. Energy Engineering 108(2):35–43. doi:10.1080/01998595.2011.10389018

    Google Scholar 

  • Satlewal A, Soni R, Zaidi M, Shouche Y, Goel R (2008) Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J Microbiol Biotechnol 18:477–482

    CAS  Google Scholar 

  • Seneviratne G, Tennakoon NS, Weerasekara MLMAW, Nandasena KA (2006) Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr Sci 90:20–22

    CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. doi:10.1016/j.biotechadv.2007.12.005

    Article  CAS  Google Scholar 

  • Shahnawaz M, Sangale MK, Ade AB (2016) Bacteria based polythene degradation products: GC-MS analysis and toxicity testing. Environ Sci Pollut Res doi:10.1007/s11356-016-6246-8

    Google Scholar 

  • Sharma A, Sharma A (2004) Degradation assessment of low density polythene (LDP) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri. J Sci Ind Res 63:293–296

    CAS  Google Scholar 

  • Singh B (2005) Harmful effect of plastic in animals. The Indian Cow: The Scientific and Economic Journal 2(6):10–18

    Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene degrading bacterium Rhodococcusruber. Appl Microbiol Biotechnol 72:346–352

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Sudhakar M, Trishul A, Doble M, Kumar KS, Jahan SS, Inbakandan D, Viduthalai RR, Umadevi VR, Murthy PS, Venkatesan R (2007) Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stab 92:1743–1752. doi:10.1016/j.polymdegradstab.2007.03.029

    Article  CAS  Google Scholar 

  • Suresh B, Maruthamuthu S, Palanisamy N, Ragunathan R, Pandiyaraj KN, Muralidharan VS (2011) Investigation on biodegradability of polyethylene by Bacillus cereus strain Ma-Su isolated from compost soil. Int Res J Microbiol 2:292–302

    Google Scholar 

  • Tafida TA (2013) Effect of starch pretreatment on the microbial degradation of low density polyethene carrier bags. Masters dissertation, Ahmadu Bello University, Zaria

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. doi:10.1073/pnas.0404206101

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B 364:2027–2045

    Article  CAS  Google Scholar 

  • Trossarelli L, Brunella V (2003) Polyethylene: discovery and growth in UHMPE meeting. IFM Department of Chemistry, University of Turin, Torino

    Google Scholar 

  • Usha R, Sangeetha T, Palaniswamy M (2011) Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agric Res Cen J Intl 2:200–204

    Google Scholar 

  • Vijaya C, Reddy RM (2008) Impact of soil composting using municipal solid waste on biodegradation of plastics. Indian J Biotechnol 7:235–239

    Google Scholar 

  • Vona I, Costanza J, Cantor H, Robert W (1965) Manufacture of plastics. Wiley, New York 1(66):141–142

    Google Scholar 

  • Watanabe T, Ohtake Y, Asabe H, Murakami N, Furukawa M (2009) Biodegradability and degrading microbes of low-density polyethylene. J Appl Polym Sci 111:551–559

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacterio 173:697–703

    CAS  Google Scholar 

  • Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–84. doi:10.1021/es504038a

    Article  CAS  Google Scholar 

  • Yi W, Wang B, Qu D (2012) Diversity of isolates performing Fe (III) reduction from paddy soil fed by different organic carbon sources. Afr J Biotechnol 11(19):4407–4417. doi:10.5897/AJB11.1216

    CAS  Google Scholar 

  • Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351(6278):1196–1199. doi:10.1126/science.aad6359

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X-J, Chen S-Y, Guo L-Y, Song M-L, Feng H, Li C, Bai J-G (2015) Bacillus methylotrophicus isolated from the cucumber rhizosphere degrades ferulic acid in soil and affects antioxidant and rhizosphere enzyme activities. Plant Soil 392:309–321. doi:10.1007/s11104-015-2464-y0

Download references

Acknowledgments

This work was a part of the project funded by Board of College and University Development (BCUD-2012-14), Savitribai Phule Pune University, Pune. MS is thankful to University Grants Commission-Maulana Azad National Fellowship (UGC-MANF-2013-14-MUS-JAM-22369) for minorities for the financial assistance. MKS is also thankful to UGC-BSR (UGC232 (004)) for providing the research fellowship to carry out the work

Funding

This work was supported by Board of College and University Development (BCUD-2012-14), Savitribai Phule Pune University, Pune-411007, Maharashtra, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Shahnawaz.

Ethics declarations

Conflict of interest

The authors declare there are no potential conflicts of interest.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnawaz, M., Sangale, M.K. & Ade, A.B. Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria. Environ Sci Pollut Res 23, 14621–14635 (2016). https://doi.org/10.1007/s11356-016-6542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6542-3

Keywords

Navigation