Skip to main content
Log in

Distribution and diversity of biosurfactant-producing bacteria in a wastewater treatment plant

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The distribution and diversity of culturable biosurfactant-producing bacteria were investigated in a wastewater treatment plant (WWTP) using the Shannon and Simpson’s indices. Twenty wastewater samples were analysed, and from 667 isolates obtained, 32 were classified as biosurfactant producers as they reduced the surface tension of the culture medium (71.1 mN/m), with the lowest value of 32.1 mN/m observed. Certain isolates also formed stable emulsions with diesel, kerosene and mineral oils. The 16S ribosomal RNA (rRNA) analysis classified the biosurfactant producers into the Aeromonadaceae, Bacillaceae, Enterobacteriaceae, Gordoniaceae and the Pseudomonadaceae families. In addition, numerous isolates carried the surfactin 4′-phosphopantetheinyl transferase (sfp), rhamnosyltransferase subunit B (rhlB) and bacillomycin C (bamC) genes involved in the biosynthesis of surfactin, rhamnolipid and bacillomycin, respectively. While, biosurfactant-producing bacteria were found at all sampling points in the WWTP, the Simpson’s diversity (1 − D) and the Shannon-Weaver (H) indices revealed an increase in bacterial diversity in the influent samples (0.8356 and 2.08), followed by the effluent (0.8 and 1.6094) and then the biological trickling filter (0.7901 and 1.6770) samples. Numerous biosurfactant-producing bacteria belonging to diverse genera are thus present throughout a WWTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Bahry S, Al-Wahaibi Y, Elshafie A, Al-Bemani A, Joshi S, Al-Makhmari H, Al-Sulaimani H (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegrad 81:141–146

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:1–12

    Article  Google Scholar 

  • Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85:1–8

    Article  CAS  Google Scholar 

  • Bento FM, de Oliveira Camargo FA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160:249–255

    Article  CAS  Google Scholar 

  • Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280

    Article  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287

    Article  CAS  Google Scholar 

  • Bonmatin J, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556

    Article  CAS  Google Scholar 

  • Chrzanowski Ł, Wick L, Meulenkamp R, Kaestner M, Heipieper H (2009) Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT‐T1E. Lett Appl Microbiol 48:756–762

    CAS  Google Scholar 

  • Chrzanowski Ł, Dziadas M, Ławniczak Ł, Cyplik P, Białas W, Szulc A, Lisiecki P, Jeleń H (2012a) Biodegradation of rhamnolipids in liquid cultures: effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. Bioresour Technol 111:328–335

    Article  CAS  Google Scholar 

  • Chrzanowski Ł, Ławniczak Ł, Czaczyk K (2012b) Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 28:401–419

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79:1897–1905

    Article  CAS  Google Scholar 

  • Dusane DH, Zinjarde SS, Venugopalan VP, Mclean RJ, Weber MM, Rahman PK (2010) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27:159–184

    Article  CAS  Google Scholar 

  • Fakruddin M (2012) Biosurfactant: production and application. J Pet Environ Biotechnol

  • Hashimoto K, Matsuda M, Inoue D, Ike M (2014) Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process. J Biosci Bioeng 118:64–71

    Article  CAS  Google Scholar 

  • Hsieh F, Li M, Lin T, Kao S (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186–191

    Article  CAS  Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090

    Article  CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh S, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    Article  CAS  Google Scholar 

  • Juwarkar AA, Dubey KV, Nair A, Singh SK (2008) Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian J Microbiol 48:142–146

    Article  CAS  Google Scholar 

  • Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204:1–8

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GE, Thomas‐Oates JE, Lugtenberg BJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113

    Article  CAS  Google Scholar 

  • Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339

    Article  Google Scholar 

  • Lazar I, Petrisor I, Yen T (2007) Microbial enhanced oil recovery (MEOR). Pet Sci Technol 25:1353–1366

    Article  CAS  Google Scholar 

  • Lourith N, Kanlayavattanakul M (2009) Natural surfactants used in cosmetics: glycolipids. Int J Cosmet Sci 31:255–261

    Article  CAS  Google Scholar 

  • Mandal SM, Barbosa AE, Franco OL (2013) Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv 31:338--345

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  Google Scholar 

  • Ndlovu T, Le Roux M, Khan W, Khan S (2015) Co-detection of virulent Escherichia coli genes in surface water sources. PLoS One 10:e0116808

    Article  Google Scholar 

  • Olapade OA, Ronk AJ (2015) Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2, 3-dioxygenase genes in contaminated soils. Microb Ecol 69:59–65

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  Google Scholar 

  • Piljac T, Piljac G (2007) Applying rhamnolipids for cosmetic treatment of wrinkles

  • Piljac A, Stipcevic T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1% dirhamnolipid ointment. J Cutan Med Surg 12:142–146

    Article  CAS  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  Google Scholar 

  • Ramarathnam R, Bo S, Chen Y, Fernando WD, Xuewen G, De Kievit T (2007) Molecular and biochemical detection of fengycin-and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911

    Article  CAS  Google Scholar 

  • Rawlings D (1995) Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. Biohydrometallurgical Process 2:9–17

    Google Scholar 

  • Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P, Thonart P (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 73:149–151

    Article  CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  Google Scholar 

  • Sen R (2010) Biosurfactants. Springer Science & Business Media

  • Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133

    Google Scholar 

  • Sheppard J, Jumarie C, Cooper D, Laprade R (1991) Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim Biophys Acta (BBA) Biomembr 1064:13–23

    Article  CAS  Google Scholar 

  • Shoeb E, Akhlaq F, Badar U, Akhter J, Imtiaz S (2013) Classification and industrial applications of biosurfactants. Acad Res Int 4:243–252

    Google Scholar 

  • Shon H, Vigneswaran S, Snyder S (2006) Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Crit Rev Environ Sci Technol 36:327–374

    Article  CAS  Google Scholar 

  • Silva S, Farias C, Rufino R, Luna J, Sarubbo L (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B: Biointerfaces 79:174–183

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Maier RM (2011) Biosurfactants: a general overview. In: Biosurfactants. Springer, pp 1--11

  • Stanković S, Mihajlović S, Draganić V, Dimkić I, Vukotić G, Berić T, Fira Đ (2012) Screening for the presence of biosynthetic genes for antimicrobial lipopeptides in natural isolates of Bacillus sp. Arch Biol Sci 64:1425--1432

  • Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    Article  Google Scholar 

  • Tabatabaee A, Assadi MM, Noohi A, Sajadian V (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. Iran J Environ Health Sci Eng 2:6–12

    Google Scholar 

  • Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Pet Environ Biotechnol S 1:2

    Google Scholar 

  • Tsuge K, Inoue S, Ano T, Itaya M, Shoda M (2005) Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother 49:4641–4648

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  Google Scholar 

  • Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    CAS  Google Scholar 

  • Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. In: Biosurfactants. Springer, pp 1-13

  • Wang Z, Li K, Fingas M, Sigouin L, Menard L (2002) Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques. J Chromatogr 971:173–184

    Article  CAS  Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Foundation (Grant number: 90320) for financial support. The authors also wish to thank Mr Vivian Kloppers and the staff members at Stellenbosch municipal wastewater treatment plant for their assistance in the collection of wastewater samples. The Department of Chemistry at Stellenbosch University and Mrs Peta Steyn are thanked for the use of the Du Nouy tensiometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesaal. Khan.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndlovu, T., Khan, S. & Khan, W. Distribution and diversity of biosurfactant-producing bacteria in a wastewater treatment plant. Environ Sci Pollut Res 23, 9993–10004 (2016). https://doi.org/10.1007/s11356-016-6249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6249-5

Keywords

Navigation