Skip to main content
Log in

Effects of Dracontomelon duperreanum defoliation extract on Microcystis aeruginosa: physiological and morphological aspects

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Harmful cyanobacteria bloom contributes to economic loss as well as the threat to human health. Agricultural waste products, particularly straw, have been used to control bloom while arbor plant is the potential candidate for limiting antialgal activity. This study investigated the use of Dracontomelon duperreanum defoliation extract (DDDE) to inhibit the activity of Microcystis aeruginosa. The primary goal of the research was to explore the solution to control cyanobacterial bloom. The photosynthetic activity, cell morphology, membrane integrity, and esterase activity of M. aeruginosa were determined using phytoplankton analyzer pulse amplitude modulation (Phyto-PAM) and flow cytometry before and after exposure to DDDE. The inhibitory rate of M. aeruginosa was about 99.6 % on day 15 when exposed to 2.0 g L−1. A reduction of chlorophyll a (Chl-a) activity and changes in cell membrane suggested the algistatic property of DDDE. Inhibition of photosynthetic activity was reflected by changing mean Chl-a fluorescence intensity (MFI) which was about 52.5 % on day 15 when exposed to 2.0 g L−1 DDDE as well as relative electron transport rates (rETRs) of algal cell. These changes might contribute to the suppression of M. aeruginosa. Algal cell exposed to DDDE may lead to cell volume reduction or slow growth. This resulted in a decreased proportion of normal or swollen granular cells after DDDE treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altenburger R, Schmitt-Jansen M, Riedl J (2008) Bioassays with unicellular algae: deviations from exponential growth and its implications for toxicity test results. J Environ Qual 37(1):16–21

    Article  CAS  Google Scholar 

  • Anderson DM, Kaoru Y, White AW (2000) Estimated annual economic impacts from harmful algal blooms (HABs) in the United States. WHOI-2000-11 Woods Hole Oceanogr Inst, Woods Hole, Massachusetts. doi: 10.1575/1912/96

  • Bailey S, Grossman A (2008) Photoprotection in cyanobacteria: regulation of light harvesting. Photochem Photobiol 84(6):1410–1420

    Article  CAS  Google Scholar 

  • Barrington DJ, Ghadouani A (2008) Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ Sci Technol 42(23):8916–8921

    Article  CAS  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62(3):667–683

    CAS  Google Scholar 

  • Chen JQ, Guo RX (2014) Inhibition effect of green alga on cyanobacteria by the interspecies interactions. Int J Environ Sci Technol 11(3):839–842

    Article  Google Scholar 

  • Choe S, Jung I (2002) Growth inhibition of freshwater algae by ester compounds released from rotted plants. J Ind Eng Chem 8(2):297–304

    CAS  Google Scholar 

  • Churro C, Alverca E, Sam-Bento F, Paulino S, Figueira VC, Bento AJ, Prabhakar S, Lobo AM, Calado AJ, Pereira P (2009) Effects of bacillamide and newly synthesized derivatives on the growth of cyanobacteria and microalgae cultures. J Appl Phycol 21(4):429–442

    Article  CAS  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharm 203(3):264–272

    Article  CAS  Google Scholar 

  • Daniel ET, Ferrier MD, Armbrester EA, Anlauf KA (2002) Inhibition of dinoflagellate growth by extracts of barley straw (Hordeum vulgare). J Appl Phycol 14(4):275–280

    Article  Google Scholar 

  • Falkowski P, Kiefer DA (1985) Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass. J Plankton Res 7(5):715–731

    Article  CAS  Google Scholar 

  • Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJM, Pereira MJ (2004) Microcystin-producing blooms-a serious global public health issue. Ecotox Environ Safe 59(2):151–163

    Article  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP (2004) Development of multispecies algal bioassays using flow cytometry. Environ Toxicol Chem 23(6):1452–1462

    Article  CAS  Google Scholar 

  • Gibson M, Welch I, Barrett PRF, Ridge I (1990) Barley straw as an inhibitor of algal growth II: laboratory studies. J Appl Phyco 2(3):241–248

    Article  Google Scholar 

  • Grzymski J, Orrico C, Schofield O (2001) Monochromatic ultraviolet light induced damage to Photosystem II efficiency and carbon fixation in the marine diatom Thalassiosira pseudonana (3H). Photosynth Res 68(3):181–192

    Article  CAS  Google Scholar 

  • Hagström JA, Sengco MR, Villareal TA (2010) Potential methods for managing Prymnesium parvum blooms and toxicity, with emphasis on clay and barley straw: a review. J Am Water Resour Assoc 46(1):187–198

    Article  Google Scholar 

  • Hong Y, Hu HY, Li FM (2008) Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotox Environ Safe 71(2):527–534

    Article  CAS  Google Scholar 

  • Huang HM, Xiao X, Shi JY, Chen YX (2014) Structure–activity analysis of harmful algae inhibition by congeneric compounds: case studies of fatty acids and thiazolidinediones. Environ Sci Pollut Res 21(11):7154–7164

    Article  CAS  Google Scholar 

  • Huang HM, Xiao X, Ghadouani A, Wu JP, Nie ZY, Peng C, Xu XH, Shi JY (2015) Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa. Toxins 7(1):66–80

    Article  Google Scholar 

  • Jančula D, Maršálek B (2012) The toxicity of phthalocyanines to the aquatic plant Lemna minor (duckweed)-testing of 31 compounds. Chemosphere 88(8):962–965

    Article  Google Scholar 

  • Jiang H, Wu B, Yang B, Xing YZ (2013) Effects of aqueous extract of eucalyptus leaves on the growth and chlorophyll fluorescence characteristics of two species of marine microalgae. Res Environ Sci 26(11):1186–1193 (in Chinese)

    CAS  Google Scholar 

  • Kong Y, Xu XY, Zhu L, Miao LH (2013) Control of the harmful alga Microcystis aeruginosa and absorption of nitrogen and phosphorus by Candida utilis. Appl Biochem Biotechnol 169(1):88–99

    Article  CAS  Google Scholar 

  • Macías FA, Oliva RM, Simonet AM, Galindo JCG (1998) What are allelochemicals? In: Olofsdotter M (ed) Allelopathy in rice. IRRI Press, Manilla, Philippines

    Google Scholar 

  • Murray D, Jefferson B, Jarvis P, Parsons SA (2010) Inhibition of three algae species using chemicals released from barley straw. Environ Technol 31(4):455–466

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Rajadurai M, Venugopalan VP (2007) Single cell level microalgal ecotoxicity assessment by confocal microscopy and digital image analysis. Environ Sci Technol 41(7):2617–2621

    Article  CAS  Google Scholar 

  • Nelder JA, Mead RA (1965) A simplex method for function minimization. Compt J 7(4):308–313

    Article  Google Scholar 

  • Newman JR, Barrett PRF (1993) Control of Microcystis aeruginosa by decomposing barley straw. J Aquat Plant Manage 31(4):203–206

    Google Scholar 

  • Ni LX, Hao XY, Li SY, Chen SJ, Ren GX, Zhu L (2011) Inhibitory effects of the extracts with different solvents from three compositae plants on cyanobacterium Microcystis aeruginosas. Sci China Chemy 54(7):1123–1129

    Article  CAS  Google Scholar 

  • Ni LX, Kumud A, Hao XY, Li SY, Li Y, Li YP (2012) Effects of artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence. Bull Environ Contam Toxicol 89(10):1165–1169

    Article  CAS  Google Scholar 

  • Ou H, Gao NY, Deng Y, Qiao JL, Wang H (2012) Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa. Water Res 46(4):1241–1250

    Article  CAS  Google Scholar 

  • Paltt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38(4):687–701

    Google Scholar 

  • Papageorgiou GC, Govindjee (2004) Chl-a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. Springer, Dordrecht

    Book  Google Scholar 

  • Qian HF, Xu XY, Chen W, Jiang H, Jin YX, Liu WP, Fu ZW (2009) Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere 75(3):368–375

    Article  CAS  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82(3):222–237

    Article  CAS  Google Scholar 

  • Ratkowsky DA (1983) Nonlinear regression modeling: a unified practical approach. Marcel Dekker, New York

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic, Orlando, USA

    Google Scholar 

  • Ridge I, Walters J, Street M (1999) Algal growth control by terrestrial leaf litter: a realistic tool? Hydrobiologia 395–396:173–180

    Article  Google Scholar 

  • Rioboo C, O’Connor JE, Prado R, Herrero C, Cid A (2009) Cell proliferation alterations in Chlorella cells under stress conditions. Aquat Toxicol 94(3):229–237

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Genetic assignments, stain histories and properties of pure culture of cyanobacteria. J Gen Microbiol 111(3):1–61

    Google Scholar 

  • Street M (1978) Research on the improvement of gravel pits for waterfowl by adding straw. Game Conserv Annu Rev 10:56–61

    Google Scholar 

  • Su XF, Nong WT (2010) Study on antimicrobial activity of extracts from Dracontomelon duperreanum. China Pharmacy 21(23):2115–2117 (in Chinese)

    Google Scholar 

  • Su W, Johannes AH, Jia YH, Lu YP, Kong FX (2014) Effects of rice straw on the cell viability, photosynthesis, and growth of Microcystis aeruginosa. Chin J Oceanol Limnol 32(1):120–129

    Article  CAS  Google Scholar 

  • Tammy AL, Gretchen RB, Stephen MB, Joshua JFH (2015) Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotox Environ Safe 114(4):318–328

    Google Scholar 

  • Tao Y, Zhang XH, Doris WTA, Mao XZ, Yuan K (2010) The effects of sub-lethal UV-C irradiation on growth and cell Integrity of cyanobacteria and green algae. Chemosphere 78(5):541–547

    Article  CAS  Google Scholar 

  • Tao Y, Mao X, Hu J, Mok HOL, Wang L, Au DWT, Zhu J, Zhang X (2013) Mechanisms of photosynthetic inactivation on growth suppression of Microcystis aeruginosa under UV-C stress. Chemosphere 93(4):637–644

    Article  CAS  Google Scholar 

  • Veldhuis MJW, Kraay GW (2000) Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Sci Mar 64(2):121–134

    Article  Google Scholar 

  • Wicks RJ, Thiel PG (1990) Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environ Sci Technol 24(9):1413–1418

    Article  CAS  Google Scholar 

  • Xiao X, Chen YX, Liang XQ, Lou LP, Tang XJ (2010) Effects of Tibetan hulless barley efficiently inhibited bloom-Forming cyanobacterium Microcystis aeruginosa. Chemosphere 81(9):1118–1123

    Article  CAS  Google Scholar 

  • Xiao X, Han ZY, Chen YX, Liang XQ, Li H, Qian YC (2011) Optimization of FDA-PI method using flow cytometry to measure metabolic activity of the cyanobacteria, Microcystis aeruginosa. Phys Chem Earth 36:424–429

    Article  Google Scholar 

  • Xiao X, Huang H, Ge Z, Rounge TB, Shi J, Xu X, Li R, Chen YX (2014) A pair of chiral flavonolignans as novel anti-Cyanobacterial allelochemicals derived from barley straw (Hordeum vulgare): characterization and comparison of their anti-Cyanobacterial activities. Environm Microbiol 16(5):1238–1251

    Article  CAS  Google Scholar 

  • Yu Y, Kong F, Wang M, Qian L, Shi X (2007) Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotox Environ Safe 66(1):49–56

    Article  CAS  Google Scholar 

  • Zhang M, Kong FX, Xing P, Tan X (2007) Effects of interspecific interactions between Microcystis aeruginosa and Chlorella pyrenoidosa on their growth and physiology. Int Rev Hydrobiol 92(3):281–290

    Article  Google Scholar 

  • Zhang D, Xie P, Liu Y, Qiu T (2009) Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci of the Total Environ 407(7):2191–2199

    Article  CAS  Google Scholar 

  • Zhu JC, Zhou L, Zhu J, Gao JS (2015) Allelopathic effects of Anthurium on cyanobacterium Microcystis aeruginosa. Research of Environ Sci 28(10):1638–1644 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China, Grant No. 51378316 and the Science, Industry, Trade and Information Technology Commission of Shenzhen Municipality, Grant Nos. 20130331151242230 and 201504301657307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jiang, C., Szeto, Yt. et al. Effects of Dracontomelon duperreanum defoliation extract on Microcystis aeruginosa: physiological and morphological aspects. Environ Sci Pollut Res 23, 8731–8740 (2016). https://doi.org/10.1007/s11356-016-6119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6119-1

Keywords

Navigation