Skip to main content
Log in

Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation–emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, <250(320)/395, 275/335, and <250/305 nm, which resembled the traditional peaks of A + C, A + M, T, and B, respectively. In addition, C1 and C2 accounted for the dominant contributions to FDOM (>60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen CM, Bro R (2003) Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J Chemom 17:200–215. doi:10.1002/cem.790

    Article  CAS  Google Scholar 

  • Bahram M, Bro R, Stedmon C, Afkhami A (2006) Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J Chemom 20:99–105. doi:10.1002/cem.978

    Article  CAS  Google Scholar 

  • Borisover M, Laor Y, Parparov A, Bukhanovsky N, Lado M (2009) Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin. Water Res 43:3104–3116. doi:10.1016/j.watres.2009.04.039

    Article  CAS  Google Scholar 

  • Bro R (1998) Interactive introduction to multi-way analysis in MATLAB: Basic PARAFAC modeling. The N-way on-line course on PARAFAC and PLS. http://www.models.kvl.dk/~courses/parafac/chap2parafac.htm. Accessed 12 July 2015

  • Cammack WKL, Kalff J, Prairie YT, Smith EM (2004) Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol Oceanogr 49:2034–2045. doi:10.4319/lo.2004.49.6.2034

    Article  Google Scholar 

  • Carstea EM, Baker A, Bieroza M, Reynolds D (2010) Continuous fluorescence excitation-emission matrix monitoring of river organic matter. Water Res 44:5356–5366. doi:10.1016/j.watres.2010.06.036

    Article  CAS  Google Scholar 

  • Chen ML, Jaffé R (2014) Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland. Water Res 61:181–190. doi:10.1016/j.watres.2014.03.075

    Article  CAS  Google Scholar 

  • Chen H, Zheng BH, Zhang L (2013) Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China. Environ Sci Process Impacts 15:485–493. doi:10.1039/c2em30715d

    Article  CAS  Google Scholar 

  • Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev 107:402–418. doi:10.1021/cr050350+

    Article  CAS  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149. doi:10.1021/es0506962

    Article  CAS  Google Scholar 

  • Francis RA, Small MJ, VanBriesen JM (2009) Multivariate distributions of disinfection by-products in chlorinated drinking water. Water Res 43:3453–3468. doi:10.1016/j.watres.2009.05.008

    Article  CAS  Google Scholar 

  • Goldman JH, Rounds SA, Needoba JA (2012) Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream. Environ Sci Technol 46:4374–4381. doi:10.1021/es2041114

    Article  CAS  Google Scholar 

  • Graeber D, Gelbrecht J, Pusch MT, Anlanger C, von Schiller D (2012) Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Sci Total Environ 438:435–446. doi:10.1016/j.scitotenv.2012.08.087

    Article  CAS  Google Scholar 

  • Guo L (2007) Doing battle with the green monster of Taihu Lake. Science 317:1166. doi:10.1126/science.317.5842.1166

    Article  CAS  Google Scholar 

  • Guo XJ, He LS, Li Q, Yuan DH, Deng Y (2014) Investigating the spatial variability of dissolved organic matter quantity and composition in Lake Wuliangsuhai. Ecol Eng 62:93–101. doi:10.1016/j.ecoleng.2013.10.032

    Article  Google Scholar 

  • Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RGM (2009) Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J Geophys Res Biogeosci 114:G00F03. doi:10.1029/2009jg000938

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370. doi:10.1130/0016-7606(1945)56[275:edosat]2.0.co;2

    Article  Google Scholar 

  • Hudson N, Baker A, Reynolds D (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Res Appl 23:631–649. doi:10.1002/rra.1005

    Article  Google Scholar 

  • Ishii SK, Boyer TH (2012) Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environ Sci Technol 46:2006–2017. doi:10.1021/es2043504

    Article  CAS  Google Scholar 

  • Jamieson T, Sager E, Guéguen C (2014) Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere 103:197–204. doi:10.1016/j.chemosphere.2013.11.066

    Article  CAS  Google Scholar 

  • Korak JA, Dotson AD, Summers RS, Rosario-Ortiz FL (2014) Critical analysis of commonly used fluorescence metrics to characterize dissolved organic matter. Water Res 49:327–338. doi:10.1016/j.watres.2013.11.025

    Article  CAS  Google Scholar 

  • Kothawala DN, Stedmon CA, Müller RA, Weyhenmeyer GA, Köhler SJ, Tranvik LJ (2014) Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey. Glob Chang Biol 20:1101–1114. doi:10.1111/gcb.12488

    Article  Google Scholar 

  • Lapierre JF, Frenette JJ (2009) Effects of macrophytes and terrestrial inputs on fluorescent dissolved organic matter in a large river system. Aquat Sci 71:15–24. doi:10.1007/s00027-009-9133-2

    Article  CAS  Google Scholar 

  • Li JH, Huang LL, Sato T, Zou LM, Jiang K, Yahara T, Kano Y (2013a) Distribution pattern, threats and conservation of fish biodiversity in the East Tiaoxi, China. Environ Biol Fish 96:519–533. doi:10.1007/s10641-012-0036-z

    Article  Google Scholar 

  • Li WT, Xu ZX, Li AM, Wu W, Zhou Q, Wang JN (2013b) HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis. Water Res 47:1246–1256. doi:10.1016/j.watres.2012.11.040

    Article  CAS  Google Scholar 

  • Liang XQ, Nie ZY, He MM, Guo R, Zhu CY, Chen YX, Stephan K (2013) Application of 15N–18O double stable isotope tracer technique in an agricultural nonpoint polluted river of the Yangtze Delta Region. Environ Sci Pollut R 20:6972–6979. doi:10.1007/s11356-012-1352-8

    Article  CAS  Google Scholar 

  • Maie N, Scully NM, Pisani O, Jaffé R (2007) Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res 41:563–570. doi:10.1016/j.watres.2006.11.006

    Article  CAS  Google Scholar 

  • Massicotte P, Frenette JJ (2011) Spatial connectivity in a large river system: resolving the sources and fate of dissolved organic matter. Ecol Appl 21:2600–2617. doi:10.1890/10-1475.1

    Article  Google Scholar 

  • Meng F et al (2013) Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers. Water Res 47:5027–5039. doi:10.1016/j.watres.2013.05.043

    Article  CAS  Google Scholar 

  • Miller MP, McKnight DM (2010) Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley. J Geophys Res 115:G00F12. doi:10.1029/2009JG000985

    Article  Google Scholar 

  • Mladenov N et al (2011) Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun 2:405. doi:10.1038/ncomms1411

    Article  CAS  Google Scholar 

  • Mostofa KMG, Liu CQ, Yoshioka T, Vione D, Zhang YL, Sakugawa H (2013) Fluorescent dissolved organic matter in natural waters. In: Mostofa KMG, Yoshioka T, Mottaleb A, Vione D (eds) Photobiogeochemistry of organic matter. Environmental science and engineering. Springer, Berlin Heidelberg, pp 429–559. doi:10.1007/978-3-642-32223-5_6

    Chapter  Google Scholar 

  • Naden PS, Old GH, Eliot-Laize C, Granger SJ, Hawkins JM, Bol R, Haygarth P (2010) Assessment of natural fluorescence as a tracer of diffuse agricultural pollution from slurry spreading on intensely-farmed grasslands. Water Res 44:1701–1712. doi:10.1016/j.watres.2009.11.038

    Article  CAS  Google Scholar 

  • Phong DD, Lee Y, Shin KH, Hur J (2014) Spatial variability in chromophoric dissolved organic matter for an artificial coastal lake (Shiwha) and the upstream catchments at two different seasons. Environ Sci Pollut R 21:7678–7688. doi:10.1007/s11356-014-2704-3

    Article  CAS  Google Scholar 

  • Rodriguez-Zuniga UF, Milori DM, da Silva WT, Martin-Neto L, Oliveira LC, Rocha JC (2008) Changes in optical properties caused by UV-irradiation of aquatic humic substances from the Amazon river basin: seasonal variability evaluation. Environ Sci Technol 42:1948–1953. doi:10.1021/es702156n

    Article  CAS  Google Scholar 

  • Short JS, Ribaudo M, Horan RD, Blandford D (2012) Reforming agricultural nonpoint pollution policy in an increasingly budget-constrained environment. Environ Sci Technol 46:1316–1325. doi:10.1021/es2020499

    Article  Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr-Methods 6:572–579. doi:10.4319/lom.2008.6.572

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S (2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697. doi:10.4319/lo.2005.50.2.0686

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254. doi:10.1016/S0304-4203(03)00072-0

    Article  CAS  Google Scholar 

  • Stutter MI, Richards S, Dawson JJC (2013) Biodegradability of natural dissolved organic matter collected from a UK moorland stream. Water Res 47:1169–1180. doi:10.1016/j.watres.2012.11.035

    Article  CAS  Google Scholar 

  • Su SL, Zhang Q, Zhang ZH, Zhi JJ, Wu JP (2011) Rural settlement expansion and paddy soil loss across an ex-urbanizing watershed in eastern coastal China during market transition. Reg Environ Chang 11:651–662. doi:10.1007/s10113-010-0197-2

    Article  Google Scholar 

  • Sulzberger B, Durisch-Kaiser E (2009) Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat Sci 71:104–126. doi:10.1007/s00027-008-8082-5

    Article  CAS  Google Scholar 

  • Wei QS, Yan CZ, Luo ZX, Zhang X, Xu QJ, Chow CWK (2012) Application of a new combined fractionation technique (CFT) to detect fluorophores in size-fractionated hydrophobic acid of DOM as indicators of urban pollution. Sci Total Environ 431:293–298. doi:10.1016/j.scitotenv.2012.05.078

    Article  CAS  Google Scholar 

  • Wilson HF, Xenopoulos MA (2009) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41. doi:10.1038/ngeo391

    Article  CAS  Google Scholar 

  • Xu HC, Jiang HL (2013) UV-induced photochemical heterogeneity of dissolved and attached organic matter associated with cyanobacterial blooms in a eutrophic freshwater lake. Water Res 47:6506–6515. doi:10.1016/j.watres.2013.08.021

    Article  CAS  Google Scholar 

  • Yang L, Hur J, Zhuang W (2015) Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review. Environ Sci Pollut R 22:6500–6510. doi:10.1007/s11356-015-4214-3

    Article  CAS  Google Scholar 

  • Yao X, Zhang YL, Zhu GW, Qin BQ, Feng LQ, Cai LL, Gao G (2011) Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 82:145–155. doi:10.1016/j.chemosphere.2010.10.049

    Article  CAS  Google Scholar 

  • Yao X, Wang SR, Ni ZK, Jiao LX (2015) The response of water quality variation in Poyang Lake (Jiangxi, People’s Republic of China) to hydrological changes using historical data and DOM fluorescence. Environ Sci Pollut R 22:3032–3042. doi:10.1007/s11356-014-3579-z

    Article  CAS  Google Scholar 

  • Yu T, Zhang Y, Wu FC, Meng W (2013) Six-decade change in water chemistry of large freshwater Lake Taihu, China. Environ Sci Technol 47:9093–9101. doi:10.1021/es401517h

    Article  Google Scholar 

  • Zhang YL, Yin Y, Feng LQ, Zhu GW, Shi ZQ, Liu XH, Zhang YZ (2011) Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Res 45:5110–5122. doi:10.1016/j.watres.2011.07.014

    Article  CAS  Google Scholar 

  • Zhang YL, Liu XH, Osburn CL, Wang MZ, Qin BQ, Zhou YQ (2013) Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation–emission matrix spectra. PLoS ONE 8:e77515. doi:10.1371/journal.pone.0077515

    Article  CAS  Google Scholar 

  • Zhang YL, Gao G, Shi K, Niu C, Zhou YQ, Qin BQ, Liu XH (2014) Absorption and fluorescence characteristics of rainwater CDOM and contribution to Lake Taihu, China. Atmos Environ 98:483–491. doi:10.1016/j.atmosenv.2014.09.038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Water Pollution Control and Treatment Project in China (No. 2014ZX07101-012), the Public Welfare Research Project of Zhejiang Province, China (No. 2013C33003), and the Special Fund for Social Development Research in Hangzhou City, China (No. 20130533B66). We specially thank the volunteers from the Department of Water Conservancy and the Institute of Wetland Ecological Research in East Tiaoxi River Watershed (Yuhang District in Hangzhou) for their assistance of sample collection, as well as Feng Zhang and Dan Li for their help to use the test equipment and ArcGIS software. The authors are also very thankful to Dr. Laurence Silpa and Dr. Yun Zhang from the Department of Chemistry at University of Oxford for revising English language and the anonymous reviewers for their valuable comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyan Shi.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 24.8 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Z., Wu, X., Huang, H. et al. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management. Environ Sci Pollut Res 23, 8756–8769 (2016). https://doi.org/10.1007/s11356-016-6110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6110-x

Keywords

Navigation