Skip to main content
Log in

Migration and transformation rule of heavy metals in sludge during hydrolysis for protein extraction

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The content and speciation of heavy metals can fundamentally affect the hydrolysis of sludge. This research study investigates the migration and transformation rule of heavy metals during the hydrolysis process by measuring the content of exchangeables (F1), bound to carbonates (F2), bound to Fe-Mn oxides (F3), bound to organic matter (F4), and residuals (F5) under different periods of time undergoing hydrolysis. The results show that the hydrolysis process generally stabilized Cu, Zn, Mn, Ni, Pb, Cr, and As by transforming the unstable states into structurally stable states. Such transformations and stabilization were primarily caused by the changes in local metal ion environment and bonding structure, oxidation of sulfides, pyrolyzation of organic matter, and evaporation of resulting volatile materials. An X-ray diffractometry (XRD) of the residuals conducted after hydrolysis indicated that hydrolysis did have a significant influence on the transportation and transformation of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (1998) Standard methods for the examination of water and wastwater, 20th edn. American Public Health Association, Washington, D.C

  • Aydilek A, Edil T (2008) Solidification/Stabilization of PCB-Contaminated Wastewater Treatment Sludges. GeoCongress 2008:724-731. doi:10.1061/40970(309)91

  • Babel S, Dacera DM (2006) Heavy metal removal from contaminated sludge for land application: a review. Waste Manag 26:988–1004

    Article  CAS  Google Scholar 

  • Canet R, Pomares F, Tarazona F (1997) Chemical extractability and availability of heavy metals after seven years application of organicwastes to a citrus soil. Soil Use Manag 13:117–121

    Article  Google Scholar 

  • Chen YX, Hua YM, Zhang SH, Tian GM (2005) Transformation of heavy metal forms during sewage sludge bioleaching. J Hazard Mater 123:196–202

    Article  CAS  Google Scholar 

  • Chen F, Zhu X, Yu W (2012) The transformation of heavy metal be in activated sludge process. In: Chu MJ, Xu HH, Jia Z, Fan Y, Xu JP, (eds) Sustainable Environment And Transportation, Pts 1–4. 178–181, 633–636

  • Chen Z, Ai Y, Fang C, Wang K, Li W, Liu S et al (2014) Distribution and phytoavailability of heavy metal chemical fractions in artificial soil on rock cut slopes alongside railways. J Hazard Mater 273:165–173

    Article  CAS  Google Scholar 

  • Coz A, Andres A, Lrabien A (2004) Ecotoxicity Assessment of Stabilized/solidified Foundry Sludge. Environ Sci Technol 38:1897–1900

    Article  CAS  Google Scholar 

  • Dabrowska L (2012) Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion. Chem Pap 66:598–606

    Article  CAS  Google Scholar 

  • Ddaniali D (1990) Stabilization/solidification of heavy metals in latex modified Portland cement matrices. J Hazard Mater 24:113–134

    Google Scholar 

  • Dewil R, Baeyens J, Appels L (2007) Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content. J Hazard Mater 144:703–707

    Article  CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1987) Development of a data base for modeling adsorption of inorganics on iron and aluminum oxides. Environ Prog 6:133–137

    Article  CAS  Google Scholar 

  • Gao DX, Hao JC, Jin JH et al (2008) Effects of single stress and combined stress of Hg and Cd on soil enzyme activities. J Agro-Environ Sci 27(3):903–908

    CAS  Google Scholar 

  • Gougar MLD, Scheetz BE, Roy DM (1996) Ettringite and C-S-H portland cement phases for waste ion immobilization: a review. Waste Manag 16:295–303

    Article  CAS  Google Scholar 

  • Hsu JH, Lo SL (2001) Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environ Pollut 114:119–127

    Article  CAS  Google Scholar 

  • IIIera V, Walter I, Souza P et al (2000) Short-term effects of biosolid and municipal solid waste applications on heavy metals distribution in a degraded soil under a semi-arid environment. Sci Total Environ 255:29–44

    Article  Google Scholar 

  • Ito A, Umita T, Aizawa J et al (2000) Removal of heavy metals from anaerobically digested sewage sludge by a new chemical method using ferric sulfate. Water Res 34:751–758

    Article  CAS  Google Scholar 

  • Jakubus M, Czekala J (2001) Heavy metal speciation in sewage sludge. Pol J Environ Stud 10:245–250

    CAS  Google Scholar 

  • Jiang J, Yang XD, Wang K (2007) Inhibition of cysteine protease papain by metal ions and polysulfide complexes, especially mercuric ion. J Chin Pharm Sci 16(1):1–8

    CAS  Google Scholar 

  • Jing-gong L, Shui-yu S (2013) Total concentrations and different fractions of heavy metals in sewage sludge from Guangzhou, China. Trans Nonferrous Metal Soc China 23:2397–2407

    Article  Google Scholar 

  • Karlsson K, Viklander M, Scholes L, Revitt M (2010) Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. J Hazard Mater 178:612–618

    Article  CAS  Google Scholar 

  • Katsioti M, Katsiotis N, Rouni G et al (2008) The effect of bentonite/cement mortar for the stabilization of sewage sludge containing heavy metals. Cem Concr Copposites 30:1013–1019

    Article  CAS  Google Scholar 

  • Kawai K, Hayashi A, Kikuchi H, Yokoyama S (2014) Desorption properties of heavy metals from cement hydrates in various chloride solutions. Constr Build Mater 67:55–60

    Article  Google Scholar 

  • Laurent J, Casellas M, Carrere H, Dagot C (2011) Effects of thermal hydrolysis on activated sludge solubilization, surface properties and heavy metals biosorption. Chem Eng J 166:841–849

    Article  CAS  Google Scholar 

  • Lazzari L, Sperni L, Bertin P et al (2000) Correlation between inorganic(heavy meatls) and organic(PCBs and PAHs) micropollutant concentrations during sweage sludge composting process. Chemosphere 41:427–435

    Article  CAS  Google Scholar 

  • Leng L, Yuan X, Huang H, Jiang H, Chen X, Zeng G (2014) The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour Technol 167:144–150

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B et al (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  Google Scholar 

  • Liang X, X-a N, Chen G, Lin M, Liu J, Wang Y (2013) Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. Ecotoxicol Environ Saf 98:128–134

    Article  CAS  Google Scholar 

  • Lima AT, Rodrigues PC, Mexia JT (2010) Heavy metal migration during electroremediation of fly ash from different wastes-Modelling. J Hazard Mater 175:366–371

    Article  CAS  Google Scholar 

  • Lin M, X-a N, Liang X, Wei P, Wang Y, Liu J (2014) Study of the heavy metals residual in the incineration slag of textile dyeing sludge. J Taiwan Inst Chem Eng 45:1814–1820

    Article  CAS  Google Scholar 

  • Liu Y, Ma L, Li Y, Zheng L (2007) Evolution of heavy metal speciation during the aerobic composting process of sewage sludge. Chemosphere 67:1025–1032

    Article  CAS  Google Scholar 

  • Liu Y, Kong S, Li Y, Zeng H (2009) Novel technology for sewage sludge utilization: preparation of amino acids chelated trace elements (AACTE) fertilizer. J Hazard Mater 171:1159–1167

    Article  CAS  Google Scholar 

  • Long Y-Y, Shen D-S, Wang H-T, Lu W-J (2010) Migration behavior of Cu and Zn in landfill with different operation modes. J Hazard Mater 179:883–890

    Article  CAS  Google Scholar 

  • Lu S, Hu Y, Su B et al (2007) Effect of metal ions on activity and conformation of acid phosphatase from wheat germ. Chem Res Appl 19(4):386–389

    CAS  Google Scholar 

  • Petruzzelli G (1989) Recycling wastes in agriculture: heavy metals bioavilability. Agric Ecosyst Environ 27:493–503

    Article  CAS  Google Scholar 

  • Poll C, Thiede A, Wermbrer N et al (2003) Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. Eur J Soil Sci 54(4):715–720

    Article  Google Scholar 

  • Quevauviller P, Rauret G, LopezSanchez JF, Rubio R, Ure A, Muntau H (1997) Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci Total Environ 205:223–234

    Article  CAS  Google Scholar 

  • Shen SB, Tyagi RD, Blais JF (2001) Extraction of Cr(III) and other metals from tannery sludge by mineral acids. Environ Technol 22:1007–1014

    Article  CAS  Google Scholar 

  • Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35(1):142–156

    Article  CAS  Google Scholar 

  • Sprynskyy M (2009) Solid–liquid-solid extraction of heavy metals (Cr, Cu, Cd, Ni and Pb) in aqueous systems of zeolite-sewage sludge. J Hazard Mater 161:1377–1383

    Article  CAS  Google Scholar 

  • Stanforth R, Yap CF, Nayar R (2005) Effectes of weathering on treatment of lead contaminated soils. J Environ Eng 131:38–48

    Article  CAS  Google Scholar 

  • Su R, Shi P, Zhu M, Hong F, Li D (2012) Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresour Technol 115:136–140

    Article  CAS  Google Scholar 

  • Sugiyama S, Lchii T, Fujisawa M et al (2003) Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates. J Colloid Interface Sci 259:408–410

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850

    Article  CAS  Google Scholar 

  • Tyagi VK, Lo S-L (2013) Microwave irradiation: a sustainable way for sludge treatment and resource recovery. Renew Sustain Energy Rev 18:288–305

    Article  CAS  Google Scholar 

  • Venkateswaran P, Vellaichamy S, Palanivelu K (2007) Speciation of heavy metals in electroplating industry sludge and wastewater residue using inductively coupled plasma. Int J Environ Sci Technol 4:497–504

    Article  CAS  Google Scholar 

  • Walter I, Guevas G (1999) Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. Sci Total Environ 226:113–119

    Article  CAS  Google Scholar 

  • Walter I, Martínez F, Cala V (2006) Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environ Pollut 139:507–514

    Article  CAS  Google Scholar 

  • Wawrzynczyk J, Recktenwald M, Norrlow O, Dey ES (2008) The function of cation-binding agents in the enzymatic treatment of municipal sludge. Water Res 42:1555–1562

    Article  CAS  Google Scholar 

  • Weng H-X, Ma X-W, Fu F-X, Zhang J-J, Liu Z, Tian L-X et al (2014) Transformation of heavy metal speciation during sludge drying: mechanistic insights. J Hazard Mater 265:96–103

    Article  CAS  Google Scholar 

  • Wong JWC, Selvam A (2006) Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere 63:980–986

    Article  CAS  Google Scholar 

  • Wong JWC, Li K, Fang M et al (2001) Toxicity evaluation of sewage sludges in Hong Kong. Environ Int 27:373–380

    Article  CAS  Google Scholar 

  • Xenidis A, Stouraiti C, Paspaliaris L (1999) Stabilization of oxidic tailings and contaminated soils bycalcium oxyphosphate addition: the case of montevecchio(Sardinia, Italy). J soil Contam 8:681–697

    Article  CAS  Google Scholar 

  • Xu J-Q, Yu R-L, Dong X-Y, Hu G-R, Shang X-S, Wang Q et al (2012) Effects of municipal sewage sludge stabilized by fly ash on the growth of Manilagrass and transfer of heavy metals. J Hazard Mater 217:58–66

    Article  Google Scholar 

  • Yang Q, Luo K, X-m L, Wang D-b, Zheng W, G-m Z et al (2010) Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour Technol 101:2924–2930

    Article  CAS  Google Scholar 

  • Yang J, Zhao C, Xing M, Lin Y (2013) Enhancement stabilization of heavy metals (Zn, Pb, Cr and Cu) during vermifiltration of liquid-state sludge. Bioresour Technol 146:649–655

    Article  CAS  Google Scholar 

  • Zhang W-f, R-j S, D-x L, Yang M (2013) Extraction of amino acids from excess activated sludge by enzymatic hydrolysis. J Donghua Univ (English Edition) 30:44–48

    Google Scholar 

  • Zhao X, Dong D, Hua X, Dong S (2009) Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. J Hazard Mater 170:570–577

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Specialized Research Fund for the Doctoral Program of Higher Education of China (20130075110006) and “Textile light” application basic research of China (J201503) and the Fundamental Research Funds for the Central Universities (15D111321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengxin Li.

Additional information

Responsible editor: Philippe Garrigues

Capsule

This manuscript first studied the migration and transformation rule of heavy metals during the hydrolysis process and analyzed the hydrolysis mechanism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xue, F., Li, J. et al. Migration and transformation rule of heavy metals in sludge during hydrolysis for protein extraction. Environ Sci Pollut Res 23, 5352–5360 (2016). https://doi.org/10.1007/s11356-015-5646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5646-5

Keywords

Navigation