Skip to main content
Log in

Uptake of polybrominated diphenyl ethers by carrot and lettuce crops grown in compost-amended soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The uptake of polybrominated diphenyl ethers (PBDEs) by carrot and lettuce was investigated. Degradation of PBDEs in soil in the absence of the plants was discarded. Different carrot (Nantesa and Chantenay) and lettuce (Batavia Golden Spring and Summer Queen) varieties were grown in fortified or contaminated compost-amended soil mixtures under greenhouse conditions. After plant harvesting, roots (core and peel) and leaves were analyzed separately for carrot, while for lettuce, leaves and hearts were analyzed together. The corresponding bioconcentration factors (BCFs) were calculated. In carrots, a concentration gradient of 2,2′,3,4,4′,5′-hexabromodiphenyl ether (BDE-138) became evident that decreased from the root peel via root core to the leaves. For decabromodiphenyl ether (BDE-209) at the low concentration level (7 and 20 ng g−1), the leaves incorporated the highest concentration of the target substance. For lettuce, a decrease in the BCF value (from 0.24 to 0.02) was observed the higher the octanol–water partition coefficient, except in the case of BDE-183 (BCF = 0.51) and BDE-209 (BCF values from 0.41 to 0.74). Significant influence of the soils and crop varieties on the uptake could not be supported. Metabolic debromination, hydroxylation or methylation of the target PBDEs in the soil–plant system was not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade NA, McConnell LL, Torrents A, Ramirez M (2010) Persistence of polybrominated diphenyl ethers in agricultural soils after biosolids applications. J Agric Food Chem. doi:10.1021/jf9034496

    Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem. doi:10.1021/jf053041t

    Google Scholar 

  • Bueno MJM, Gomez MJ, Herrera S, Hernando MD, Agüera A, Fernández-Alba AR (2012) Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environ Pollut. doi:10.1016/j.envpol.2012.01.038

    Google Scholar 

  • Chen A, Park J, Linderholm L, Rhee A, Petreas M, DeFranco EA, Dietrich KN, Ho S (2013) Hydroxylated polybrominated diphenyl ethers in paired maternal and cord sera. Environ Sci Technol. doi:10.1021/es3046839

    Google Scholar 

  • Chow KL, Man YB, Tam NFY, Liang Y, Wong MH (2015) Uptake and transport mechanisms of decabromodiphenyl ether (BDE-209) by rice (Oryza sativa). Chemosphere. doi:10.1016/j.chemosphere.2014.10.016

    Google Scholar 

  • Clarke BO, Smith SR (2011) Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int. doi:10.1016/j.envint.2010.06.004

    Google Scholar 

  • Clarke B, Porter N, Symons R, Blackbeard J, Ades P, Marriott P (2008) Dioxin-like compounds in Australian sewage sludge“ Review and national survey. Chemosphere. doi:10.1016/j.chemosphere.2008.01.076

    Google Scholar 

  • Eljarrat E, Marsh G, Labandeira A, Barceló D (2008) Effect of sewage sludges contaminated with polybrominated diphenylethers on agricultural soils. Chemosphere. doi:10.1016/j.chemosphere.2007.10.047

    Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Esbensen KH (2001) Multivariate data analysis - in practice. Camo ASA, Oslo

  • Felizeter S, McLachlan MS, de Voogt P (2012) Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environ Sci Technol. doi:10.1021/es302398u

    Google Scholar 

  • García-Valcárcel AI, Molero E, Escorial MC, Chueca MC, Tadeo JL (2014) Uptake of perfluorinated compounds by plants grown in nutrient solution. Sci Tot Environ. doi:10.1016/j.scitotenv.2013.10.054

    Google Scholar 

  • Gerecke AC, Hartmann PC, Heeb NV, Kohler HE, Giger W, Schmid P, Zennegg M, Kohler M (2005) Anaerobic degradation of decabromodiphenyl ether. Environ Sci Technol. doi:10.1021/es048634j

    Google Scholar 

  • Gevao B, Muzaini S, Helaleh M (2008) Occurrence and concentrations of polybrominated diphenyl ethers in sewage sludge from three wastewater treatment plants in Kuwait. Chemosphere. doi:10.1016/j.chemosphere.2007.09.043

    Google Scholar 

  • Gomes RL, Scrimshaw MD, Lester JN (2009) Fate of conjugated natural and synthetic steroid estrogens in crude sewage and activated sludge batch studies. Environ Sci Technol. doi:10.1021/es801952h

    Google Scholar 

  • Hale RC, La Guardia MJ, Harvey EP, Gaylor MO, Mainor TM, Duff WH (2001) Flame retardants: persistent pollutants in land-applied sludges. Nature. doi:10.1038/35084130

  • Hale RC, La Guardia MJ, Harvey E, Chen D, Mainor TM, Luellen DR, Hundal LS (2012) Polybrominated diphenyl ethers in U.S. sewage sludges and biosolids: temporal and geographical trends and uptake by corn following land application. Environ Sci Technol. doi:10.1021/es203149g

    Google Scholar 

  • Huang H, Zhang S, Christie P, Wang S, Xie M (2010) Behavior of decabromodiphenyl ether (BDE-209) in the soil-plant system: uptake, translocation, and metabolism in plants and dissipation in soil. Environ Sci Technol. doi:10.1021/es901860r

    Google Scholar 

  • Huang H, Zhang S, Christie P (2011) Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites. Environ Pollut. doi:10.1016/j.envpol.2010.08.034

    Google Scholar 

  • Inglett PW, Reddy KR, Corstanje R (2005) In: Hillel D, Hatfield J (eds) Encyclopedia of soils in the environment. Elsevier, Amsterdam, pp 72–78

    Chapter  Google Scholar 

  • Inui H, Wakai T, Gion K, Kim Y, Eun H (2008) Differential uptake for dioxin-like compounds by zucchini subspecies. Chemosphere. doi:10.1016/j.chemosphere.2008.08.013

    Google Scholar 

  • Iparragirre A, Rodil R, Quintana JB, Bizkarguenaga E, Prieto A, Zuloaga O, Cela R, Fernandez LA (2014) Matrix solid-phase dispersion for the extraction of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogues in vegetables and soils. J Chromatogr A. doi:10.1016/j.chroma.2014.07.079

    Google Scholar 

  • Jelic A, Gros M, Petrovic M, Ginebreda A, Barceló D (2012) Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. In: Guasch H, Ginebreda A, Geiszinger A (eds) Emerging and priority pollutants in rivers. Springer, Berlin Heidelberg, pp 1–23

    Chapter  Google Scholar 

  • Jones-Lepp TL, Stevens R (2007) Pharmaceuticals and personal care products in biosolids/sewage sludge: the interface between analytical chemistry and regulation. Anal Bioanal Chem. doi:10.1007/s00216-006-0942-z

    Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Gobas FAPC (2008) Hydroxylated and methoxylated polybrominated diphenyl ethers in a Canadian arctic marine food web. Environ Sci Technol. doi:10.1021/es801275d

    Google Scholar 

  • Knoth W, Mann W, Meyer R, Nebhuth J (2007) Polybrominated diphenyl ether in sewage sludge in Germany. Chemosphere. doi:10.1016/j.chemosphere.2006.05.113

    Google Scholar 

  • Krippner J, Brunn H, Falk S, Georgii S, Schubert S, Stahl T (2014) Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays). Chemosphere. doi:10.1016/j.chemosphere.2013.09.018

    Google Scholar 

  • Laturnus F, von Arnold K, Gron C (2007) Organic contaminants from sewage sludge applied to agricultural soils: false alarm regarding possible problems for food safety? Environ Sci Pollut Res Int. doi:10.1065/espr2006.12.365

    Google Scholar 

  • Lechner M, Knapp H (2011) Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis sativus). J Agri Food Chem. doi:10.1021/jf201355y

    Google Scholar 

  • Li H, Qu R, Yan L, Guo W, Ma Y (2015) Field study on the uptake and translocation of PBDEs by wheat (Triticum aestivum L.) in soils amended with sewage sludge. Chemosphere. doi:10.1016/j.chemosphere.2014.12.045

    Google Scholar 

  • Lindqvist D, Jensen S, Asplund L (2014) Lipid-soluble conjugates of hydroxylated polybrominated diphenyl ethers in blue mussels from the Baltic Sea. Environ Sci Pollut Res. doi:10.1007/s11356-013-1962-9

    Google Scholar 

  • Liu J, Schnoor JL (2008) Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere. doi:10.1016/j.chemosphere.2008.08.009

    Google Scholar 

  • Macherius A, Eggen T, Lorenz WG, Reemtsma T, Winkler U, Moeder M (2012) Uptake of galaxolide, tonalide, and triclosan by carrot, barley, and meadow fescue plants. J Agri Food Chem. doi:10.1021/jf301917q

    Google Scholar 

  • Mailler R, Gasperi J, Chebbo G, Rocher V (2014) Priority and emerging pollutants in sewage sludge and fate during sludge treatment. Waste Manag. doi:10.1016/j.wasman.2014.03.028

    Google Scholar 

  • Marteau C, Chevolleau S, Jouanin I, Perdu E, De Sousa G, Rahmani R, Antignac J, LeBizec B, Zalko D, Debrauwer L (2012) Development of a liquid chromatography/atmospheric pressure photo-ionization high-resolution mass spectrometry analytical method for the simultaneous determination of polybrominated diphenyl ethers and their metabolites: application to BDE-47 metabolism in human hepatocytes. Rapid Commun Mass Spectrom. doi:10.1002/rcm.6136

    Google Scholar 

  • Mueller KE, Mueller-Spitz SR, Henry HF, Vonderheide AP, Soman RS, Kinkle BK, Shann JR (2006) Fate of pentabrominated diphenyl ethers in soil: abiotic sorption, plant uptake, and the impact of interspecific plant interactions. Environ Sci Technol. doi:10.1021/es060776l

    Google Scholar 

  • Muir DCG, Howard PH (2006) Are there other persistent organic pollutants? A challenge for environmental chemists. Environ Sci Technol. doi:10.1021/es061677a

    Google Scholar 

  • Otani T, Seike N, Sakata Y (2007) Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera. Soil Sci Plant Nutr. doi:10.1111/j.1747-0765.2007.00102.x

    Google Scholar 

  • Paterson S, Mackay D, Mcfarlane C (1994) A model of organic-chemical uptake by plants from soil and the atmosphere. Environ Sci Technol. doi:10.1021/es00062a009

    Google Scholar 

  • Petrovic M, de Alda MJL, Diaz-Cruz S, Postigo C, Radjenovic J, Gros M, Barcelò D (2009) Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration. Philos Trans R Soc A Math Phys Eng Sci. doi:10.1098/rsta.2009.0105

    Google Scholar 

  • Roig N, Sierra J, Nadal M, Martí E, Navalón-Madrigal P, Schuhmacher M, Domingo JL (2012) Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. Sci Tot Environ. doi:10.1016/j.scitotenv.2012.03.018

    Google Scholar 

  • Schwab AP, Al-Assi AA, Banks MK (1998) Adsorption of naphthalene onto plant roots. J Environ Qual. doi:10.2134/jeq1998.00472425002700010031x

    Google Scholar 

  • Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Technol. doi:10.1021/es00012a004

    Google Scholar 

  • Sjöström ÅE, Collins CD, Smith SR, Shaw G (2008) Degradation and plant uptake of nonylphenol (NP) and nonylphenol-12-ethoxylate (NP12EO) in four contrasting agricultural soils. Environ Pollut. doi:10.1016/j.envpol.2008.03.005

    Google Scholar 

  • Stevens J, Green NJL, Jones KC (2001) Survey of PCDD/Fs and non-ortho PCBs in UK sewage sludges. Chemosphere. doi:10.1016/S0045-6535(00)00474-4

    Google Scholar 

  • Stevens JL, Northcott GL, Stern GA, Tomy GT, Jones KC (2003) PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in U.K. Sewage sludge: survey results and implications. Environ Sci Technol. doi:10.1021/es020161y

    Google Scholar 

  • Sun J, Liu J, Liu Y, Jiang G (2013a) Hydroxylated and methoxylated polybrominated diphenyl ethers in mollusks from Chinese coastal areas. Chemosphere. doi:10.1016/j.chemosphere.2013.03.042

    Google Scholar 

  • Sun J, Liu J, Yu M, Wang C, Sun Y, Zhang A, Wang T, Lei Z, Jiang G (2013b) In vivo metabolism of 2,2′,4,4′-tetrabromodiphenyl ether (bde-47) in young whole pumpkin plant. Environ Sci Technol. doi:10.1021/es4003263

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associates, Sunderland, p 671–705

  • Verkleij JAC, Colan-Goldhirsh A, Antosiewisz DM, Schwitzguébel JP, Schröder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot. doi:10.1016/j.envexpbot.2009.05.009

    Google Scholar 

  • Voulvoulis N, Lester JN (2006) Fate of organotins in sewage sludge during anaerobic digestion. Sci Tot Environ. doi:10.1016/j.scitotenv.2006.08.024

    Google Scholar 

  • Voulvoulis N, Scrimshaw MD, Lester JN (2004) Removal of organotins during sewage treatment: a case study. Environ Technol. doi:10.1080/09593330.2004.9619363

    Google Scholar 

  • Vrkoslavová J, Demnerová K, Macková M, Zemanová T, Macek T, Hajšlová J, Pulkrabová J, Hrádková P, Stiborová H (2010) Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge. Chemosphere. doi:10.1016/j.chemosphere.2010.07.010

    Google Scholar 

  • Wang Y, Zhang Q, Lv J, Li A, Liu H, Li G, Jiang G (2007) Polybrominated diphenyl ethers and organochlorine pesticides in sewage sludge of wastewater treatment plants in China. Chemosphere. doi:10.1016/j.chemosphere.2007.03.060

    Google Scholar 

  • Wang S, Wu T, Huang H, Ping H, Lu A, Zhang S (2011a) Analysis of hydroxylated polybrominated diphenyl ethers in plant samples using ultra performance liquid chromatography-mass spectrometry. Sci China Chem. doi:10.1007/s11426-011-4383-y

    Google Scholar 

  • Wang S, Zhang S, Huang H, Zhao M, Lv J (2011b) Uptake, translocation and metabolism of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in maize (Zea mays L.). Chemosphere. doi:10.1016/j.chemosphere.2011.07.002

    Google Scholar 

  • Wang S, Zhang S, Huang H, Lu A, Ping H (2012) Debrominated, hydroxylated and methoxylated metabolism in maize (Zea mays L.) exposed to lesser polybrominated diphenyl ethers (PBDEs). Chemosphere. doi:10.1016/j.chemosphere.2012.05.026

    Google Scholar 

  • Wang S, Zhang S, Huang H, Niu Z, Han W (2014) Characterization of polybrominated diphenyl ethers (PBDEs) and hydroxylated and methoxylated PBDEs in soils and plants from an e-waste area. China Environ Pollut. doi:10.1016/j.envpol.2013.09.021

    Google Scholar 

  • Whitfield Aslund ML, Rutter A, Reimer KJ, Zeeb BA (2008) The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci Total Environ. doi:10.1016/j.scitotenv.2008.07.066

    Google Scholar 

  • Wiseman SB, Wan Y, Chang H, Zhang X, Hecker M, Jones PD, Giesy JP (2011) Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. Mar Pollut Bull. doi:10.1016/j.marpolbul.2011.02.008

    Google Scholar 

  • Xia K, Hundal LS, Kumar K, Armbrust K, Cox AE, Granato TC (2010) Triclocarban, triclosan, polybrominated diphenyl ethers, and 4-nonylphenol in biosolids and in soil receiving 33-year biosolids application. Environ Toxicol Chem. doi:10.1002/etc.66

    Google Scholar 

  • Zhao L, McCausland PK, Folsom PW, Wolstenholme BW, Sun H, Wang N, Buck RC (2013) Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants. Chemosphere. doi:10.1016/j.chemosphere.2013.02.032

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the MICINN through the CTM2011-24094 project. Technical and human support by PhD. Azucena González, Phytotron Service and Luis Bartolomé, Analysis Service, SGIker (UPV/EHU) is gratefully acknowledged. A. Iparraguirre is grateful to the University of the Basque Country for her post-doctoral grant. E. Bizkarguenaga is grateful to the Basque Government for her pre-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bizkarguenaga.

Additional information

Philippe Garrigues.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 23 kb)

Table S2

(DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizkarguenaga, E., Iparraguirre, A., Oliva, E. et al. Uptake of polybrominated diphenyl ethers by carrot and lettuce crops grown in compost-amended soils. Environ Sci Pollut Res 23, 3847–3859 (2016). https://doi.org/10.1007/s11356-015-5608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5608-y

Keywords

Navigation