Skip to main content
Log in

Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The use of nanoparticles (NPs) is of increasing significance due to their large potential for various applications. Great attention should be paid on the possible impacts of nanoparticles on the environment as large amounts of them may reach the environment by accident or voluntarily. Marine algae are potential organisms for usage in nanopollution bioremediation in aquatic system, because of their ability to adapt to long exposure to NPs. Thus, it is of prime importance to study the possible interactions of different NPs with microalgae in assessing their potential environmental risks. Most studies on potential environmental effects of ZnO and TiO2 NPs have been performed independently and following the widely accepted, standardized test systems, which had been developed for the characterization of chemicals. In this study, we have examined the cumulative effect of ZnO and TiO2 NPs on Picochlorum sp. in addition to the individual effects of these NPs over 32 days. Our results indicate that the toxicity and availability of NPs to marine algae are reduced by their aggregation and sedimentation. NPs are found to have a negative effect on algal growth and chlorophyll a concentration during the early growth stages. In contrast, the case is reversed during the late growth stages. There is no significant difference between the effect of the NPs when they are used separately and when both ZnO and TiO2 are used together in the test (P > 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams LK, Lyon DY, Mcintosh A, Alvarez PJJ (2006) Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci Technol 54:327–334

    Article  CAS  Google Scholar 

  • Agawin NSR, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600

    Article  CAS  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Baker TJ, Tyler CR, Galloway TS (2013) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    Article  CAS  Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Woods S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Illiou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2010) ZnO nanoparticles: synthesis, characterization and ecotoxicological studies. Langmuir 26:6522–6528

    Article  CAS  Google Scholar 

  • Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small- sized phototrophs. Freshw Rev 1:1–28

    Article  Google Scholar 

  • Cardinale BJ, Bier R, Kwan C (2012) Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater. J Nanoparticle Res 14:913–921

    Article  CAS  Google Scholar 

  • Chen P, Powell BA, Mortimer M, Ke PC (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ Sci Technol 46:12178–12185

    Article  CAS  Google Scholar 

  • Danovaro R, Bongiorni L, Corinaldesi C, Giovannelli D, Damiani E, Astolfi P, Greci L, Pusceddu A (2008) Sunscreens cause coral bleaching by promoting viral infections. Environ Health Perspect 116:441–447

    CAS  Google Scholar 

  • Debnath S, Ghosh U (2011) Equilibrium modeling of single and binary adsorption of Cd (II) and Cu(II) onto agglomerated nanostructured titanium (IV) oxide. Desalination 273:330–342

    Article  CAS  Google Scholar 

  • Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn and Ni to titanium dioxide nanoparticles: effects of particle size, solid concentration and exhaustion. Environ Sci Pollut Res 18:386–395

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticles ZnO, bulk ZnO and ZnCl2 to a freshwater microalgae (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaier K, Gall FL, Vaulot D, Scanlan DJ (2006) Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquat Microb Ecol 43:79–93

    Article  Google Scholar 

  • Gong N, Shao K, Feng W, Lin Z, Liang C, Sunn Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510–516

    Article  CAS  Google Scholar 

  • Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  • Handy RD, Von Der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Hartmann NB, Kammer FV, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modifications of cadmium bioavailability. Toxicology 269:190–197

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Hong FH, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effects of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  Google Scholar 

  • Hou W-C, Westerhoff P, Posner JD (2013) Biological accumulation of engineered nanomaterials: a review of current knowledge. Environ Sci 15:103–122

    CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano 2:2103–2112

    Article  CAS  Google Scholar 

  • Ji J, Long ZF, Lin DH (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530

    Article  CAS  Google Scholar 

  • Jorgensen EG (1969) Adaptation of plankton alga 4. Light adaptation in different algal species. Physiol Plant 22:1307–1315

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kulacki KJ, Cardinale BJ (2012) Effects of nano-titanium dioxide on freshwater algal population dynamics. PLoS ONE 7(10):e47130

    Article  CAS  Google Scholar 

  • Lei Z, Su MY, Xiao W, Chao L, Qu CX, Liang C, Hao H, Liu XQ, Hong FS (2007) Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach. Biol Trace Elem Res 120:273–283

    Article  CAS  Google Scholar 

  • Li WKW (1994) Primary productivity of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175

    Article  CAS  Google Scholar 

  • Limbach LK, Yuchun L, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJO (2005) Particle, nanoparticles uptake in human lung fibroblasts: size, aggregation and diffusion at low concentrations. Environ Sci Technol 39:9370–9376

    Article  CAS  Google Scholar 

  • Lovern SB, Kapler R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137

    Article  CAS  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85

    Article  CAS  Google Scholar 

  • Manzo S, Miglietta ML, Rametta G, Buono S, Francia GD (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella teriolecta. Sci Total Environ 445–446:371–376

    Article  CAS  Google Scholar 

  • Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40

    Article  CAS  Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2: review of in vivo data. Environ Pollut 159:677–684

    Article  CAS  Google Scholar 

  • Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572

    Article  CAS  Google Scholar 

  • Miao AJ, Zhang XY, Luo Z, Chen CS, Chin WC, Santschi PH et al (2010) Zinc oxide engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822

    Article  CAS  Google Scholar 

  • Miglietta ML, Rametta G, Di Francia G, Manzo S, Rocco A, Carotenuto R et al (2011) Characterization of nanoparticles in seawater for toxicity assessment towards aquatic organisms. Lect Notes Electr Eng 91:425–429

    Article  Google Scholar 

  • Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impact of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976

    Article  CAS  Google Scholar 

  • Moreira D, Lopez-Garcia P (2002) The molecular ecology of microbial eukaryote, unveils a hidden world. Trends Microbiol 10:31–38

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the Nanolevel. Science 311(5761):622–627

  • Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196

    Article  CAS  Google Scholar 

  • Popov AP, Priezzhev AV, Lademann J, Myllylä R (2005) TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J Phys D Appl Phys 38:2564–2570

    Article  CAS  Google Scholar 

  • Quigg A, Chin W-C, Chen C-S, Zhang S, Jiang Y, Miao A-J, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sust Chem Eng 1:686–702

    Article  CAS  Google Scholar 

  • Raven J (1998) The twelfth Tansley lecture: small is beautiful: the picophytoplankton. Funct Ecol 12:503–513

    Article  Google Scholar 

  • Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187

    Article  CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Lie Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185

    Article  CAS  Google Scholar 

  • Scully NM, Cooper WJ, Tranvik LJ (2003) Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol Ecol 46:353–357

    Article  CAS  Google Scholar 

  • Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and sun care products. Inorg Chim Acta 360:794–802

    Article  CAS  Google Scholar 

  • Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112

    Article  CAS  Google Scholar 

  • Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7:137–150

    Article  Google Scholar 

  • Tong T, Wilke CM, Wu J, Binh CTT, Kelly JJ, Gaillard J-F, Gray KA (2015) Combined toxicity of Nano- ZnO and Nano- TiO2: from single- to multinanomaterial systems. Environ Sci Technol 49:8113–8123

    Article  CAS  Google Scholar 

  • Usui H, Matsui H, Tanabe N, Yanagida S (2004) Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes. J Photochem Photobiol A 164:97–101

    Article  CAS  Google Scholar 

  • Velzeboer I, Hendriks AJ, Ragas AMJ, Van De Meent D (2008) Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27:1942–1947

    Article  CAS  Google Scholar 

  • Vohra FC (1966) Determination of photosynthetic pigment in seawater. Monograph on oceanographic methodology I. UNESCO, Paris, p 1–66

  • Wang J, Jin I, Xue L, Qu Y, Fu H (2008) Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. J Hazard Mater 160:208–212

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  • Wong SWY, Leung PTY, Djurisic AB, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618

    Article  CAS  Google Scholar 

  • Yang W-W, Li Y, Miao A-J, Yang L-Y (2012a) Toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotoxicol Environ Saf 85:44–51

    Article  CAS  Google Scholar 

  • Yang W-W, Miao A-J, Yang L-Y (2012b) Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7:e32300

    Article  CAS  Google Scholar 

  • Zheng L, Hong FS, Lu SP, Lui C (2005) Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  Google Scholar 

  • Zhou H, Wang X, Zhou Y, Yao H, Ahmad F (2014) Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Anal Bioanal Chem 406:3689–3695

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant number (11/2012) funded by the Deanship of Scientific Research, University of Bahrain. The authors are grateful to Dr. Wael A. Ismail from the University of Arabian Gulf, Kingdom of Bahrain, to provide us with the NPs, Ms. Hannan Abbas for technical assistance with the SEM and EDS analyses and Ms. Hanna Parvez Butt for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layla J. Hazeem.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazeem, L.J., Bououdina, M., Rashdan, S. et al. Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp.. Environ Sci Pollut Res 23, 2821–2830 (2016). https://doi.org/10.1007/s11356-015-5493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5493-4

Keywords

Navigation