Skip to main content
Log in

Potential application of oil-suspended particulate matter aggregates (OSA) on the remediation of reflective beaches impacted by petroleum: a mesocosm simulation

  • DECAPAGE Project: Hydrocarbon degradation in coastal sediments*
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper presents the oil-suspended particulate matter aggregate (OSA) resulted from the interaction of droplets of dispersed oil in a water column and particulate matter. This structure reduces the adhesion of oil on solid surfaces, promotes dispersion, and may accelerate degradation processes. The effects of the addition of fine sediments (clay + silt) on the formation of OSA, their impact on the dispersion and degradation of the oil, and their potential use in recovering reflective sandy beaches were evaluated in a mesoscale simulation model. Two simulations were performed (21 days), in the absence and presence of fine sediments, with four units in each simulation using oil from the Recôncavo Basin. The results showed that the use of fine sediment increased the dispersion of the oil in the water column up to four times in relation to the sandy sediment. There was no evidence of the transport of hydrocarbons in bottom sediments associated with fine sediments that would have accelerated the dispersion and degradation rates of the oil. Most of the OSA that formed in this process remained in the water column, where the degradation processes were more effective. Over the 21 days of simulation, we observed a 40 % reduction on average of the levels of saturated hydrocarbons staining the surface oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

SPM:

Suspended particulate matter

OSA:

Oil-suspended particulate matter aggregates

TPHs:

Total petroleum hydrocarbons

TOC:

Total organic carbon

LEPETRO:

Laboratory for the Study of Petroleum

GC-FID:

Gas chromatography with a flame ionization detector

OM:

Organic matter

PCA:

Principal component analysis

HCA:

Hierarchical cluster analysis

Pr:

Pristane

Ph:

Phytane

CAPES:

Coordination for the Improvement of Higher Education Personnel

References

  • Ajijolaiya LO, Hill PS, Khelifa A, Islam RM, Lee K (2006) Laboratory investigation of the effects of mineral size and concentration on the formation of oil–mineral aggregates. Mar Pollut Bull 56:920–927

    Article  CAS  Google Scholar 

  • Agência Nacional do Petróleo (ANP) (2005) Brasil round 7. http://www.anp.gov.br/brasilrounds/round7/round7/areas_oferecidas.asp. Accessed February 2014

  • American Petroleum Institute (API) (1985) Oil spill cleanup: options for minimizing adverse ecological impacts. Health and Environmental Science Department, Washington, p 580

  • Atlas RM, Raymond RL (1997) Stimulated petroleum biodegradation. Crit Rev In Microbiol 5(4):371–386

    Article  Google Scholar 

  • Backhus DA, Golini C, Castellanos E (2003) Evaluation of fluorescence quenching for assessing the importance of interactions between nonpolar organic pollutants and dissolved organic matter. Environ Sci Technol 37(20):4717–4723

    Article  CAS  Google Scholar 

  • Bandara UC, Poojitha DY, Xie H (2011) Fate and transport of oil in sediment laden marine waters. J Hydro Environ Res 5:145–156

    Article  Google Scholar 

  • Boehm PD (1987) Transport and transformation processes regarding hydrocarbon and metal pollutants in offshore sedimentary environments. In: Boesch DF, Rabalais NN (eds) Long-term environmental effects of offshore oil and gas development. Elsevier Applied Science, London, pp 233–287

    Google Scholar 

  • Calliari LJ, Muehe D, Hoefel FG, Toldo Jr EE (2003) Morfodinâmica praial: uma breve revisão. Rev Bras Oceanogr 50:63–78

  • Cantagallo C, Milanelli JCC, Dias-Brito D (2007) Limpeza de ambientes costeiros brasileiros contaminados por petróleo: uma revisão. Pan-Am J Aquat Sci 1:1–12

  • Carls MG, Holland L, Larsen M, Collier TK, Scholz NL, Incardona JP (2008) Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat Toxicol 88(2):121–127

    Article  CAS  Google Scholar 

  • Dean RG (1973) Heuristic models of sad transport in the surf zone. Proceedings of Conference on Engineering Dynamics in the Coastal Zone, p.208–214

  • Fricke AH, Henning HF-KO, Orren MJ (1981) Relationship between oil pollution and Psammolittoral meiofauna density of two South African beaches. Mar Environ Res 5:59–77

    Article  Google Scholar 

  • Guyomarch J, LE Floch S, Merlin F (2002) Effect of suspended mineral load, water salinity and oil type on the size of oil–mineral aggregates in the presence of chemical dispersant. Spill Sci Technol Bull 8(1):95–100

    Article  CAS  Google Scholar 

  • Hoefel FG (1998) Morfodinâmica de praias arenosas oceânicas: uma revisão bibliográfica, 1st edn. Editora da UNIVALI, Itajaí, p 92

    Google Scholar 

  • International Tanker Owners Pollution Federation (ITOPF) (2011) Shoreline clean up. http://www.itopf.com. Accessed December 2013

  • Kepkay PE, Lee K, Stoffyn-Egli P (2002) Application of ultraviolet fluorescence spectroscopy to monitor oil–mineral aggregate formation. Spill Sci Technol Bull 8(1):101–108

    Article  CAS  Google Scholar 

  • Khelifa A, Stoffyn-Egli P, Hill PS, Lee K (2005) Effects of salinity and clay type on oil–mineral aggregation. Mar Environ Res 59:235–254

    Article  CAS  Google Scholar 

  • Le Floch S, Guyosarch J, Merlin FX, Stofyn-Egli P, Dixon J, Lee K (2002) The influence of salinity on oil–mineral aggregate formation. Spill Sci Technol Bull 8(1):65–71

    Article  CAS  Google Scholar 

  • Lee K (2002) Oil–particle interactions in aquatic environments: influence on the transport, fate, effect and remediation of oil spills. Spill Sci Technol Bull 8(1):3–8

    Article  CAS  Google Scholar 

  • Lee K, Weise AM, St-Pierre S (1996) Enhanced oil biodegradation with mineral fine interaction. Spill Sci Technol Bull 3(4):263–267

    Article  CAS  Google Scholar 

  • Lee K, Lunel T, Wood P, Swanneu R, Stoffyn-Egli P (1997) Shoreline cleanup by acceleration of clay-oil flocculation processes. In: Proc. Int. Oil Spill Conf. American Petroleum Institute Publication N°. 4651, Washington, DC, U.S.A, pp 235–240

    Google Scholar 

  • Li Z, Kepkaya P, Lee K, Kinga T, Boufadelb MC, Venosa AD (2007) Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves. Mar Pollut Bull 54:983–993

  • Lunel TK, Lee K, Swannell R (1996) Shoreline clean up during the Sea Empress incident: the role of surf washing (clay-oil flocculation), dispersants and bioremediation. In: Proceedings of the 19th 794 Arctic and Marine Oil Spill Program (AMOP) Technical Seminar. Environment Canada, Ottawa, Ontario, p. 1521–1540

  • Moreira ITA (2014) Investigação de possíveis impactos ecológicos do petróleo sobre comunidades biológicas estuarinas na Baía de Todos os Santos e no sul da Bahia: OSA como uma ferramenta norteadora. Tese de Doutorado em Geologia Marinha, Instituto de Geociências, Universidade Federal da Bahia, p.207

  • Moreira ITA, Oliveira OMC, Triguis JA, Dos Santos AMP, Queiroz AFS, Martins CMS, Silva CS, Jesus RS (2011) Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchem J 99:376–382

    Article  CAS  Google Scholar 

  • Moreira ITA, Oliveira OMC, Triguis JA, Queiroz AFS, Ferreira SLC, Martins CMS, Silva ACM, Falcão BA (2013) Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPHs) using Avicennia schaueriana. Mar Pollut Bull 67(1):130–136

    Article  CAS  Google Scholar 

  • Muschenheim DK, Lee K (2002) Removal of oil from the sea surface through particulate interactions: review and prospectus. Spill Sci Technol Bull 8:9–18

    Article  CAS  Google Scholar 

  • Niu H, Li Z, Lee K, Kepkay P, Mullin JV (2010) Modelling the transport of oil–mineral-aggregates (OSAs) in the marine environment and assessment of their potential risks. Environ Model Assess 3:10–25

    Google Scholar 

  • NOAA. National Oceanic and Atmospheric Administration (1999) Screening quick reference tables. Hazmat Report, v. 99, n.1. NOAA, Washington, p 12

    Google Scholar 

  • Omotoso OE, Munoz VA, Mikula RJ (2002) Mechanisms of crude oil–mineral interactions. Spill Sci Technol Bull 8(1):45–54

    Article  CAS  Google Scholar 

  • Owens, E. H. Evaluation of shoreline cleaning versus natural recovery: the Metula spill and the Komi operations. Proceedings International Oil Spill Conference, American Petroleum Institute, Washington, D.C., Publication Number 4620, p. 503–509, 1999

  • Owens EH, Lee K (2003) Interaction of oil and mineral fines on shorelines: review and assessment. Mar Pollut Bull 47:397–405

    Article  CAS  Google Scholar 

  • Readman JW, Fillmann G, Tolosa I, Bartocci J, Villeneuve JP, Catinni C, Lee LD (2002) Petroleum and PAH contamination of the Black Sea. Mar Pollut Bull 44:48–62

    Article  CAS  Google Scholar 

  • Santas R, Santas P (2000) Effects of wave action on the bioremediation of crude oil saturated hydrocarbons. Mar Pollut Bull 40(5):434–439

    Article  CAS  Google Scholar 

  • Sergy GA, Guénette CC, Owens EH, Prince RC, Lee K (2003) In-situ treatment of oiled sediment shorelines. Spill Sci Technol Bull 8(3):237–244

    Article  CAS  Google Scholar 

  • Shen L, Jaffé R (2000) Interactions between dissolved petroleum hydrocarbons and pure and humic acid-coated mineral surfaces in artificial seawater. Mar Environ Res 49:217–231

    Article  CAS  Google Scholar 

  • Silva CS, Moreira ITA, Oliveira MC, Queiroz AFS, Garcia KS, Falcão BA, Escobar NFC, Rios MC (2013) Spatial distribution and concentration assessment of total petroleum hydrocarbons in the intertidal zone surface sediment of Todos os Santos Bay, Brazil. Environ Monit Assess 186(2):1271–1280

    Article  CAS  Google Scholar 

  • Sorensen L, Melbye AG, Booth MA (2014) Oil droplet interaction with suspended sediment in the seawater column: influence of physical parameters and chemical dispersants. Mar Pollut Bull 78:146–152

    Article  CAS  Google Scholar 

  • STATSOFT Inc (2009) STATISTICA for the Windows operating system. Release 9. EUA, StatSoft., Tulsa

    Google Scholar 

  • Sterling Jr MC, Bonner JS, Ernest ANS, Page CA, Autenrieth RL (2004) Characterizing aquatic sediment–oil aggregates using in situ instruments. Mar Pollut Bull 48:533–542

    Article  CAS  Google Scholar 

  • Stoffyn-Egli P, Lee K (2002) Formation and characterization of oil– mineral aggregates. Spill Sci Technol Bull 8(1):31–44

    Article  CAS  Google Scholar 

  • Sun J, Zheng AX (2009) A review of oil-suspended particulate matter aggregation—a natural process of cleansing spilled oil in the aquatic environment. J Environ Monit 11:1801–1809

    Article  CAS  Google Scholar 

  • Sun J, Khelifa A, Zheng X, Wang Z, So LL, Wong S, Yang C, Fieldhouse B (2010) A laboratory study on the kinetics of the formation of oil-suspended particulate matter aggregates using the NIST-1941b sediment. Mar Pollut Bull 60:1701–1707

    Article  CAS  Google Scholar 

  • Tolosa I, DE Mora S, Sheikholeslami MR, Villeneuve JP, Bartocci J, Cattini C (2004) Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Mar Pollut Bull V 48:44–60

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (1996) Method 3510c: separatory funnel liquid-liquid extraction. http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/3510c.pdf. Accessed February 2014

  • Venturini N, Tommasi LR, Bícego MC, Martins CC (2004) Characterization of the benthic environment of a coastal area adjacent to an oil refinery, Todos os Santos Bay (NE-Brazil). Braz J Oceanogr 52(2):123–134

    Article  Google Scholar 

  • Volkman JK, Holdsworth DG, Neill GP, Bavor Jr HJ (1992) Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci Total Environ 112:203–219

    Article  CAS  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon m soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–902, 263

    Article  CAS  Google Scholar 

  • Ward WC, Folk RL (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  • Weise AM, Nalewajko C, Lee K (1999) Oil–mineral fine interactions facilitate oil biodegradation in seawater. Environ Technol 20:811–824

    Article  CAS  Google Scholar 

  • Wood PA, Lunel T, Swannell DF, Lee K, Stoffyn-Egli P (1998) Clay-oil flocculation during surf washing at the Sea Empress incident, Proceedings of 21 st Arctic and Marine Oils Spill Program Technical Seminar, Edmonton

    Google Scholar 

  • Wright LD, Short AD (1984) Morphodynamics variability of surf zones and beaches: a synthesis. Mar Geol 56:93–118

    Article  Google Scholar 

Download references

Acknowledgments

This study was performed with financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES) and Queiroz Galvão Exploração e Produção S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine S. Silva.

Additional information

Responsible editor: Hongwen Sun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.S., de Oliveira, O.M.C., Moreira, I.T.A. et al. Potential application of oil-suspended particulate matter aggregates (OSA) on the remediation of reflective beaches impacted by petroleum: a mesocosm simulation. Environ Sci Pollut Res 26, 18071–18083 (2019). https://doi.org/10.1007/s11356-015-5234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5234-8

Keywords

Navigation