Skip to main content
Log in

Metal bioaccumulation pattern by Cotylorhiza tuberculata (Cnidaria, Scyphozoa) in the Mar Menor coastal lagoon (SE Spain)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Coastal lagoons are ecosystems highly vulnerable to human impacts because of their situation between terrestrial and marine environment. Mar Menor coastal lagoon is one of the largest lagoons of the Mediterranean Sea, placed in SE Spain and subjected to major human impacts, in particular the mining of metal sulphides. As a consequence, metal concentration in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, the present study has assessed the ability of Cotylorhiza tuberculata for bioaccumulating metals from sea water. Up to 65 individuals were sampled at 8 different sampling stations during the summer of 2012. Although the concentration values for different elements considered were moderate (Pb: 0.04-29.50 ppm, Zn: 2.27-93.44 ppm, Cd: 0-0.67 ppm, As: 0.56-130.31 ppm) by dry weight of the jellyfish tissues (bell and oral arms combined), bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content because of their potential environmental and health implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc U K 85:523–536. doi:10.1017/S0025315405011458

    Article  Google Scholar 

  • Bautista EG, Sánchez-Badorrey E, Díez-Minguito M, Losada MA, Baraza F (2007) Modelo de gestión integral del Mar Menor (I): modelo de circulación de la laguna y tramo litoral próximo. IX Jornadas Españolas de Costas y Puertos. San Sebastián, Spain

    Google Scholar 

  • Bresler V, Abelson A, Fishelson L, Feldstein T, Rosenfeld M, Mokady O (2003) Marine molluscs in environmental monitoring I. Cellular and molecular responses. Helgolander Marine Research 57:157–165. doi:10.1007/s10152-003-0151-5

    Article  Google Scholar 

  • CARM (2013) Memoria de actividades del Servicio de Pesca y Acuicultura de la Comunidad Autónoma de la Región de Murcia, año 2012. Consejería de Agricultura y Agua de la Región de Murcia. 25 p. http://webcache.googleusercontent.com/search?q=cache:gOP0jzP9u-IJ:www.carm.es/web/pagina%3FIDCONTENIDO%3D44331%26IDTIPO%3D100%26RASTRO%3Dc220%24m22084+&cd=1&hl=es&ct=clnk&gl=es

  • Carreño MF, Esteve MA, Martínez J, Palazón JA, Pardo MT (2008) Habitat changes in coastal wetlands associated to hydrological changes in the watershed. Estuar Coast Shelf Sci 77:475–483. doi:10.1016/j.ecss.2007.10.026

    Article  Google Scholar 

  • Chapman PM (1995) Ecotoxicology and pollution – Key issues. Mar Pollut Bull 31:167–177. doi:10.1016/0025-326X(95)00101-R

    Article  CAS  Google Scholar 

  • Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22. doi:10.1897/1551-5028(2001)020<0003:ASCIE>2.0.CO;2

    Article  CAS  Google Scholar 

  • Cimino G, Alfa M, La Spada G (1983) Trace elements in tentacles from the jellyfish Pelagia noctiluca. Mar Pollut Bull 14:197–198

    Article  CAS  Google Scholar 

  • Coquery M, Cossa D, Sanjuan J (1997) Speciation and sorption of mercury in two macro-tidal estuaries. Mar Chem 58(1–2):213–227. doi:10.1016/S0304-4203(97)00036-4

    Article  CAS  Google Scholar 

  • Creighton N, Twining J (2010) Bioaccumulation from food and water of cadmium, selenium and zinc in an estuarine fish, Ambassis jacksoniensis. Mar Pollut Bull 60:1815–1821. doi:10.1016/j.marpolbul.2010.05.025

    Article  CAS  Google Scholar 

  • Depledge MH, Rainbow PS (1990) Models of regulation and accumulation of trace metals in marine invertebrates. Comp Biochem Physiol 97C:1–7

    CAS  Google Scholar 

  • Estes AM, Kempf SC, Henry RP (2003) Localization and quantification of carbonic anhydrase activity in the symbiotic scyphozoan Cassiopea xamachana. Biol Bull 204:278–289

    Article  CAS  Google Scholar 

  • Franco I, Gili JM (1989) Some aspects on the biology of Aurelia aurita in the coastal lagoon Mar Menor. SE Spain. In: Proceedings of 5th international conference on coelenterate biology, Southampton

    Google Scholar 

  • Fuentes V, Straehler-Pohl I, Atienza D, Franco I, Tilves U, Gentile M, Acevedo M, Olariaga A, Gili JM (2011) Life cycle of the jellyfish Rhizostoma pulmo (Scyphozoa: Rhizostomeae) and its distribution, seasonality and interannual variability along the Catalan coast and the Mar Menor (Spain, NW Mediterranean). Mar Biol 158:2247–2266. doi:10.1007/s00227-011-1730-7

    Article  Google Scholar 

  • Fukuda Y, Naganuma T (2001) Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Mar Biol 138:1029–1035. doi:10.1007/s002270000512

    Article  CAS  Google Scholar 

  • Furla P, Allemand D, Orsenigo M (2000) Involvement of H+-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiotic photosynthesis. American Journal of Physiology–Regulatory, Integrative and Comparative. Physiology 278:870–881

    Google Scholar 

  • Harrison NM (1984) Predation on jellyfish and their associates by seabirds. Limnol Oceanogr 29:1335–1337

    Article  Google Scholar 

  • Hay S (2006) Marine ecology: Gelatinous bells may ring change in marine ecosystems. Current Biology 16. Issue 17:R679–R682. doi:10.1016/j.cub.2006.08.010

    Google Scholar 

  • Hodgkin EP (1994) Estuaries and coastal lagoons. In: Hammond LS, Synott RN (eds) Marine Biology. Longman Cheshire, Melbourne, pp 97–114

    Google Scholar 

  • Kingsford MJ, Pitt KA, Gillanders BM (2000) Management of jellyfish fisheries, with special reference to the order Rhizostomeae. Oceanogr Mar Biol Annu Rev 38:85–156

    Google Scholar 

  • LaJeunesse TC, Loh W, Trench RK (2009) Do introduced endosymbiotic dinoflagellates ‘take’ to new hosts? Biol Invasions 11:995–1003. doi:10.1007/s10530-008-9311-5

    Article  Google Scholar 

  • Lucas CH, Horton AA (2014) Short-term effects of the heavy metals, silver and copper, on polyps of the common jellyfish, Aurelia aurita. J Exp Mar Biol Ecol 461:154–161. doi:10.1016/j.jembe.2014.08.003

    Article  CAS  Google Scholar 

  • Marín-Guirao L, Cesar A, Marín A, Lloret J, Vita R (2005) Establishing the ecological quality status of soft-bottom mining-impacted coastal water bodies in the scope of the Water Framework Directive. Mar Pollut Bull 50:374–387. doi:10.1016/j.marpolbul.2004.11.019

    Article  Google Scholar 

  • Marín-Guirao L, Lloret J, Marín A, García G, García AJ (2007) Pulse-discharges of mining wastes into a coastal lagoon: Water chemistry and toxicity. Chem Ecol 23(3):217–231. doi:10.1080/02757540701339422

    Article  Google Scholar 

  • Martínez-Alvarez V, Gallego-Elvira B, Maestre-Valero JF, Tanguy M (2011) Simultaneous solution for water, heat and salt balances in a Mediterranean coastal lagoon (Mar Menor, Spain). Estuar Coast Shelf Sci 91(2):250–261. doi:10.1016/j.ecss.2010.10.030

    Article  Google Scholar 

  • Moreno-Grau MD (2003) Metales. In: Moreno-Grau MD (ed) Toxicología Ambiental. Evaluación de riesgos para la salud humana. McGraw-Hill, Madrid (España), pp 198–235

    Google Scholar 

  • Mwanamoki PM, Devarajan N, Thevenon F, Birane N, de Alencastro LF, Grandjean D, Mpiana PT, Prabakar K, Mubedi JI, Kabele CG, Wildi W, Poté J (2014) Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects. Chemosphere 111:485–492. doi:10.1016/j.chemosphere.2014.04.083

    Article  CAS  Google Scholar 

  • Pérez-Ruzafa A (1989) Estudio ecológico y bionómico de los poblamientos bentónicos del Mar Menor (Murcia, SE de España). Ph. D. Thesis, University of Murcia

    Google Scholar 

  • Pérez-Ruzafa A, Gilabert J, Gutiérrez JM, Fernández AI, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475:359–369. doi:10.1023/A:1020343510060

    Article  Google Scholar 

  • Perrault JR (2014) Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): A cause for concern in this species? Mar Environ Res 99:160–169. doi:10.1016/j.marenvres.2014.04.011

    Article  CAS  Google Scholar 

  • Pitt KA, Kingsford MJ (2003) Temporal and spatial variation in recruitment and growth of medusae of the jellyfish Catostylus mosaicus (Scyphozoa: Rhizostomeae). Mar Freshw Res 54:117–125. doi:10.1071/MF02110

    Article  Google Scholar 

  • Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149. doi:10.1007/s10750-008-9584-9

    Article  CAS  Google Scholar 

  • Purcell JE (1991) A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia 216:335–342. doi:10.1007/BF00026483

    Article  Google Scholar 

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44. doi:10.1023/A:1011883905394

    Article  Google Scholar 

  • Rainbow PS, Phillips DJH (1993) Cosmopolitan biomonitors of trace-metals. Mar Pollut Bull 26:593–601. doi:10.1016/0025-326X(93)90497-8

    Article  CAS  Google Scholar 

  • Reizopoulou S, Thessalou-Legaki M, Nicolaidou A (1996) Assessment of disturbance in Mediterranean lagoons: an evaluation of methods. Mar Biol 125:189–197. doi:10.1007/BF00350773

    Article  Google Scholar 

  • Romeo M, Gnassia-Barelli M, Carre C (1992) Importance of gelatinous plankton organisms in storage and transfer of trace-metals in the northwestern Mediterranean. Mar Ecol Prog Ser 82:267–274. doi:10.3354/meps082267

    Article  CAS  Google Scholar 

  • Ruus A, Schaanning M, Oxnevad S, Hylland K (2005) Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquat Toxicol 72:273–292. doi:10.1016/j.aquatox.2005.01.004

    Article  CAS  Google Scholar 

  • Sadiq M (1992) Toxic Metal Chemistry in Marine Environments. CRC Press, New York, p 392

    Google Scholar 

  • Sánchez M (2008) Estudi de la mobilitat i biodisponibilitat de pol-luents en la zona minera del Camp de Cartagena. Ph.D. Thesis, Universitat de Girona, Spain, p 199

    Google Scholar 

  • Simoneau J (1973) Mar Menor: Evolution sedimentologique et geochimique recente du remplissage. Thesis, Université Paul Sebatier de Tolouse, France

    Google Scholar 

  • Stebbing ARD (1981) Hormesis – Stimulation of colony growth in Campanularia flexuosa (Hydrozoa) by copper, cadmium and other toxicants. Aquat Toxicol 1:227–238. doi:10.1016/0166-445X(81)90017-5

    Article  CAS  Google Scholar 

  • Stebbing ARD (2002) Tolerance and hormesis—increased resistance to copper in hydroids linked to hormesis. Mar Environ Res 54:805–809. doi:10.1016/S0141-1136(02)00119-8

    Article  CAS  Google Scholar 

  • Templeman MA, Kingsford MJ (2010) Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar Environ Res 69:63–72. doi:10.1016/j.marenvres.2009.08.001

    Article  CAS  Google Scholar 

  • Templeman MA, Kingsford MJ (2012) Variation in soft tissue chemistry among scyphozoan and cubozoan jellyfishes from the Great Barrier Reef, Australia. Hydrobiologia 690:279–290. doi:10.1007/s10750-012-1051-y

    Article  CAS  Google Scholar 

  • Yang M, Jiang L, Huang H, Zeng S, Qiu F, Yu M, Li X, Wei S (2014) Dietary exposure to aluminium and health risk assessment in the residents of Shenzhen, China. PLoS One 9(3):e89715. doi:10.1371/journal.pone.0089715

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank to Fundación Séneca for funding project 12038/PI/09. We thank the collaboration of J.M. Peñas, J.J. Saura, R. Baños, M. Saura and B. Villaescusa who helped us to improve this research and to Mr. and Mrs. Purves for their English grammar supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Muñoz-Vera.

Additional information

Responsible editor: Thomas Hutchinson

Highlights

Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sn and Pb were studied in a coastal lagoon.

Very low concentrations were found in the water of the studied coastal lagoon.

High accumulative capacity in Cotylorhiza tuberculata for all elements considered.

Elemental accumulation has been basically independent from location in the lagoon.

Management of this species should take into account their high metal content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Vera, A., García, G. & García-Sánchez, A. Metal bioaccumulation pattern by Cotylorhiza tuberculata (Cnidaria, Scyphozoa) in the Mar Menor coastal lagoon (SE Spain). Environ Sci Pollut Res 22, 19157–19169 (2015). https://doi.org/10.1007/s11356-015-5119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5119-x

Keywords

Navigation