Skip to main content
Log in

A reactive transport model for mercury fate in contaminated soil—sensitivity analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bernaus A, Gaona X, van Ree D, Valiente M (2006) Determination of mercury in polluted soils surrounding a chlor-alkali plant: Direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta 565(1):73–80

    Article  CAS  Google Scholar 

  • Bessinger BA, Marks CD (2010) Treatment of mercury-contaminated soils with activated carbon: A laboratory, field, and modeling study. Remediat J 21(1):115–135. doi:10.1002/rem.20275

    Article  Google Scholar 

  • Biester H, Gosar M, Müller G (1999) Mercury speciation in tailings of the Idrija mercury mine. J Geochem Explor 65(3):195–204

    Article  CAS  Google Scholar 

  • Blanc P, Lassin A, Piantone P (2012) THERMODDEM a database devoted to waste minerals. BRGM, Orléans, France. http://thermoddem.brgm.fr

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479(2):233–248

    Article  CAS  Google Scholar 

  • Bollen A, Wenke A, Biester H (2008) Mercury speciation analyses in HgCl2-contaminated soils and groundwater-Implications for risk assessment and remediation strategies. Water Res 42(1-2):91–100

    Article  CAS  Google Scholar 

  • Braakhekke MC, Beer C, Hoosbeek MR, Reichstein M, Kruijt B, Schrumpf M, Kabat P (2011) SOMPROF: A vertically explicit soil organic matter model. Ecol Model 222(10):1712–1730. doi:10.1016/j.ecolmodel.2011.02.015

    Article  CAS  Google Scholar 

  • Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Model Softw 22(10):1509–1518

    Article  Google Scholar 

  • Davis A, Bloom NS, Que Hee SS (1997) The Environmental Geochemistry and Bioaccessibility of Mercury in Soils and Sediments: A Review. Risk Anal 17(5):557–569. doi:10.1111/j.1539-6924.1997.tb00897.x

    Article  CAS  Google Scholar 

  • Don A, Schulze E-D (2008) Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types. Biogeochemistry 91(2):117–131. doi:10.1007/s10533-008-9263-y

    Article  Google Scholar 

  • Gao Y, Shi Z, Long Z, Wu P, Zheng C, Hou X (2012) Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem J 103(0):1–14. doi:10.1016/j.microc.2012.02.001

    Article  CAS  Google Scholar 

  • Gustafsson JP (1999) WinHumicV For Win95/98/NT. Retrieved from http://www2.lwr.kth.se/English/OurSoftWare/WinHumicV/index.htm

  • Jacques D, Šimůnek J, Mallants D, Van Genuchten MT (2006) Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J Contam Hydrol 88:197–218

    Article  CAS  Google Scholar 

  • Jacques D, Šimůnek J, Mallants D, van Genuchten MT (2008a) Modeling Coupled Hydrologic and Chemical Processes: Long-Term Uranium Transport following Phosphorus Fertilization. Vadose Zone J 7(2):698–711. doi:10.2136/vzj2007.0084

    Article  Google Scholar 

  • Jacques D, Šimůnek J, Mallants D, Van Genuchten MT (2008b) Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma 145(3-4):449–461

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    Article  CAS  Google Scholar 

  • Kocman D, Horvat M, Pirrone N, Cinnirella S (2013) Contribution of contaminated sites to the global mercury budget. Environ Res. doi:10.1016/j.envres.2012.12.011i

    Google Scholar 

  • Kothawala DN, Moore TR, Hendershot WH (2008) Adsorption of dissolved organic carbon to mineral soils: A comparison of four isotherm approaches. Geoderma 148(1):43–50

    Article  CAS  Google Scholar 

  • Leopold K, Foulkes M, Worsfold P (2010) Methods for the determination and speciation of mercury in natural waters—A review. Anal Chim Acta 663(2):127–138. doi:10.1016/j.aca.2010.01.048

    Article  CAS  Google Scholar 

  • Leterme B, Blanc P, Jacques D (2014) A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources. Environ Sci Pollut Res 21:12279–12293. doi:10.1007/s11356-014-3135-x

    Article  CAS  Google Scholar 

  • Liu G, Cai Y, O’Driscoll N, Feng X, Jiang G (2012) Overview of mercury in the environment. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 1–12. doi:10.1002/9781118146644.ch1

    Google Scholar 

  • Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. J Environ Monit 13(12):3460–3468. doi:10.1039/C1EM10694E

    Article  CAS  Google Scholar 

  • Morris MD (1991) Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49(8):1089–1101. doi:10.1007/s00254-005-0152-6

    Article  CAS  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4(1):29–48. doi:10.1007/s100210000058

    Article  CAS  Google Scholar 

  • Ota M, Nagai H, Koarashi J (2013) Root and dissolved organic carbon controls on subsurface soil carbon dynamics: A model approach. J Geophys Res Biogeosci 118(4):1646–1659. doi:10.1002/2013JG002379

    Article  CAS  Google Scholar 

  • Pirrone N, Cinnirella S, Feng X, Finkelman R, Friedli H, Leaner J, Mason R, Mukherjee A, Stracher G, Streets D (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964

    Article  CAS  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter: a review. Chemosphere 55(3):319–331

    Article  CAS  Google Scholar 

  • Reddy MM, Aiken GR (2001) Fulvic Acid-Sulfide Ion Competition for Mercury Ion Binding in the Florida Everglades. Water Air Soil Pollut 132(1):89–104. doi:10.1023/a:1012073503678

    Article  CAS  Google Scholar 

  • Rinklebe J, During A, Overesch M, Du Laing G, Wennrich R, Stärk H-J, Mothes S (2010) Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environ Pollut 158(1):308–318

    Article  CAS  Google Scholar 

  • Santoro A, Terzano R, Blo G, Fiore S, Mangold S, Ruggiero P (2010) Mercury speciation in the colloidal fraction of a soil polluted by a chlor-alkali plant: a case study in the South of Italy. J Synchrotron Radiat 17(2):187–192. doi:10.1107/S0909049510002001

    Article  CAS  Google Scholar 

  • Scholtz MT, Van Heyst BJ, Schroeder WH (2003) Modelling of mercury emissions from background soils. Sci Total Environ 304(1-3):185–207

    Article  CAS  Google Scholar 

  • Sen TK, Khilar KC (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interf Sci 119(2-3):71–96

    Article  Google Scholar 

  • Seuntjens P, Mallants D, Šimůnek J, Patyn J, Jacques D (2002) Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile. J Hydrol 264(1):185–200

    Article  CAS  Google Scholar 

  • Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. J Geophys Res 113:G00C03. doi:10.1029/2008jg000745

    Google Scholar 

  • Skyllberg U (2010) Mercury biogeochemistry in soils and sediments. Dev Soil Sci 34:379–410

  • Skyllberg U (2012) Chemical speciation of mercury in soil and sediment. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 219–258. doi:10.1002/9781118146644.ch7

  • Slowey AJ, Rytuba JJ, Brown GE (2005) Speciation of Mercury and Mode of Transport from Placer Gold Mine Tailings. Environ Sci Technol 39(6):1547–1554. doi:10.1021/es049113z

    Article  CAS  Google Scholar 

  • Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T, Kolditz O, Lagneau V, Lichtner PC, Mayer KU, Meeussen JCL, Molins S, Moulton D, Shao H, Šimůnek J, Spycher N, Yabusaki SB, Yeh GT (2014) Reactive transport codes for subsurface environmental simulation. Comput Geosci, pp 1–34. doi:10.1007/s10596-014-9443-x

  • Stolk AP (2001) Landelijk Meetnet Regenwatersamenstelling - Meetresultaten 1999. Dutch National Precipitation Chemistry Network. Monitoring results for 1999. Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven, the Netherlands, p 61.

  • Terzano R, Santoro A, Spagnuolo M, Vekemans B, Medici L, Janssens K, Göttlicher J, Denecke MA, Mangold S, Ruggiero P (2010) Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques. Environ Pollut 158(8):2702–2709

    Article  CAS  Google Scholar 

  • Tipping E, Wadsworth RA, Norris DA, Hall JR, Ilyin I (2011) Long-term mercury dynamics in UK soils. Environ Pollut 159(12):3474–3483

    Article  CAS  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Waples JS, Nagy KL, Aiken GR, Ryan JN (2005) Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochim Cosmochim Acta 69(6):1575–1588

    Article  CAS  Google Scholar 

  • Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74(0):42–53. doi:10.1016/j.envint.2014.09.007

    Article  CAS  Google Scholar 

  • Zhu J, Sykes JF (2004) Simple screening models of NAPL dissolution in the subsurface. J Contam Hydrol 72(1-4):245–258

    Article  CAS  Google Scholar 

  • Zhu Y, Ma LQ, Gao B, Bonzongo JC, Harris W, Gu B (2012) Transport and interactions of kaolinite and mercury in saturated sand media. J Hazard Mater 213-214:93–99. doi:10.1016/j.jhazmat.2012.01.061

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study is part of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. This particular work was done with the financial support of the Public Waste Agency of Flanders (OVAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Leterme.

Additional information

Responsible editor: Stuart Simpson

Electronic supplementary material

Below is the link to the electronic supplementary material.

ONLINE RESOURCE 1

Tables of elementary effect statistics μ (arithmetic mean), μ* (mean of the absolute values) and σ (standard deviation) for the sensitivity analysis. The three Tables correspond to the three simulation groups: (a) cinnabar, (b) Hg NAPL and (c) HgCl2(aq) as the initial contamination. (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leterme, B., Jacques, D. A reactive transport model for mercury fate in contaminated soil—sensitivity analysis. Environ Sci Pollut Res 22, 16830–16842 (2015). https://doi.org/10.1007/s11356-015-4876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4876-x

Keywords

Navigation