Skip to main content
Log in

Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydrochars produced from different feedstocks (sawdust, wheat straw, and corn stalk) via hydrothermal carbonization (HTC) and KOH modification were used as alternative adsorbents for aqueous heavy metals remediation. The chemical and physical properties of the hydrochars and KOH-treated hydrochars were characterized, and the ability of hydrochars for removal of heavy metals from aqueous solutions as a function of reaction time, pH, and initial contaminant concentration was tested. The results showed that KOH modification of hydrochars might have increased the aromatic and oxygen-containing functional groups, such as carboxyl groups, resulting in about 2–3 times increase of cadmium sorption capacity (30.40–40.78 mg/g) compared to that of unmodified hydrochars (13.92–14.52 mg/g). The sorption ability among different feedstocks after modification was as the following: sawdust > wheat straw > corn stack. Cadmium sorption kinetics on modified hydrochars could be interpreted with a pseudo-second order, and sorption isotherm was simulated with Langmuir adsorption model. High cadmium uptake on modified hydrochars was observed over the pH range of 4.0–8.0, while for other heavy metals (Pb2+, Cu2+, and Zn2+) the range was 4.0–6.0. In a multi-metal system, the sorption capacity of heavy metals by modified hydrochars was also higher than that by unmodified ones and followed the order of Pb(II) > Cu(II) > Cd(II) > Zn(II). The results suggest that KOH-modified hydrochars can be used as a low cost, environmental-friendly, and effective adsorbent for heavy metal removal from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bai L, Hu H, Fu W, Wan J, Cheng X, Zhuge L, Xiong L, Chen Q (2011) Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions. J Hazard Mater 195:261–275

    Article  CAS  Google Scholar 

  • Bandosz TJ, Jagiello J, Contescu C, Schwarz JA (1993) Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. Carbon 31:1193–1202

    Article  CAS  Google Scholar 

  • Blázquez G, Hernáinz F, Calero M, Ruiz-Núñez LF (2005) Removal of cadmium ions with olive stones: the effect of somes parameters. Process Biochem 40:2649–2654

    Article  Google Scholar 

  • Boehm HP (1966) Chemical identification of surface groups. Adv Catal 16:179–274

    CAS  Google Scholar 

  • Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nunoura T, Antal MJ (2007) Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Ind Eng Chem Res 46:5954–5967

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291

    Article  CAS  Google Scholar 

  • Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Soil Res 46:437–444

    Article  Google Scholar 

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133

    Article  CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011a) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723

    Article  CAS  Google Scholar 

  • Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011b) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884

    Article  CAS  Google Scholar 

  • Chen Z, Ma L, Li S, Geng J, Song Q, Liu J, Wang C, Wang H, Li J, Qin Z, Li S (2011c) Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Appl Surf Sci 257:8686–8691

    Article  CAS  Google Scholar 

  • Dong X, Wang C, Li H, Wu M, Liao S, Zhang D, Pan B (2014) The sorption of heavy metals on thermally treated sediments with high organic matter content. Bioresour Technol 160:123–128

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Über die adsorption in lösungen. Zeitschrift für Physikalische

  • Han X, C-f L, T-q L, Wang K, H-g H, X-e Y (2013) Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar. J Zhejiang Univ Sci B 14:640–649

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res 51:9023–9031

    Article  CAS  Google Scholar 

  • Karaosmanoglu F, Isiḡigür-Ergüdenler A, Sever A (2000) Biochar from the straw-stalk of rapeseed plant. Energy Fuels 14:336–339

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Kołodyńska D, Wnętrzak R, Leahy JJ, Hayes MHB, Kwapiński W, Hubicki Z (2012) Kinetic and adsorptive characterization of biochar in metal ions removal. Chem Eng J 197:295–305

    Article  Google Scholar 

  • Kula I, Uğurlu M, Karaoğlu H, Çelik A (2008) Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99:492–501

    Article  CAS  Google Scholar 

  • Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manag 92:2504–2512

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology: Earthscan

  • Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106

    Article  CAS  Google Scholar 

  • Liu Z, Zhang F-S (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167:933–939

    Article  CAS  Google Scholar 

  • Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102:9255–9260

    Article  CAS  Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das K, Ahmedna M, Rehrah D, Watts DW, Busscher WJ (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:2

    Google Scholar 

  • Ohno T, He Z, Sleighter RL, Honeycutt CW, Hatcher PG (2010) Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil-and plant biomass-derived organic matter fractions. Environ Sci Technol 44:8594–8600

    Article  CAS  Google Scholar 

  • Oliveira I, Blöhse D, Ramke H-G (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:138–146

    Article  CAS  Google Scholar 

  • Pham M, Schideman L, Scott J, Rajagopalan N, Plewa MJ (2013) Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina. Environ Sci Technol 47:2131–2138

    Article  CAS  Google Scholar 

  • Regmi P, Garcia Moscoso JL, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage 109:61–69

    Article  CAS  Google Scholar 

  • Román S, Valente Nabais JM, Ledesma B, González JF, Laginhas C, Titirici MM (2013) Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater 165:127–133

    Article  Google Scholar 

  • Rouquerol J, Avnir D, Fairbridge C, Everett D, Haynes J, Pernicone N, Ramsay J, Sing K, Unger K (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB, Mokaya R (2011) High density hydrogen storage in super activated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci 4:1400

    Article  CAS  Google Scholar 

  • Sharma Y, Gode F (2010) Engineering data for optimization of preparation of activated carbon from an economically viable material. J Chem Eng Data 55:3991–3994

    Article  CAS  Google Scholar 

  • Shrestha G, Traina SJ, Swanston CW (2010) Black carbon’s properties and role in the environment: a comprehensive review. Sustainability 2:294–320

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Sun K, Ro K, Guo M, Novak J, Mashayekhi H, Xing B (2011) Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour Technol 102:5757–5763

    Article  CAS  Google Scholar 

  • Tchomgui-Kamga E, Alonzo V, Nanseu-Njiki CP, Audebrand N, Ngameni E, Darchen A (2010) Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water. Carbon 48:333–343

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58:5538–5544

    Article  CAS  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011a) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441

    Article  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011b) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510

    Article  CAS  Google Scholar 

  • Wang XS, Miao HH, He W, Shen HL (2011) Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon. J Chem Eng Data 56:444–449

    Article  CAS  Google Scholar 

  • Wu D, Pan B, Wu M, Peng H, Zhang D, Xing B (2012) Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes. Sci Total Environ 427–428:247–252

    Article  Google Scholar 

  • Xiao L-P, Shi Z-J, Xu F, Sun R-C (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623

    Article  CAS  Google Scholar 

  • Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS (2012) Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem Eng J 200–202:673–680

    Article  Google Scholar 

  • Yakkala K, Yu M-R, Roh H, Yang J-K, Chang Y-Y (2013) Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system. Desalin Water Treat 51:7732–7745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by (1) National Natural Science Foundation of China (31270544, 41473070), (2) 863 Major Program (2013AA06A205), and (3) Research Fund for the Doctoral Program of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingchun Tang.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Tang, J., Gong, Y. et al. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Environ Sci Pollut Res 22, 16640–16651 (2015). https://doi.org/10.1007/s11356-015-4849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4849-0

Keywords

Navigation