Skip to main content
Log in

Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to use of different parametric models for establishing species sensitivity distributions (SSDs), comparison of water quality criteria (WQC) for metals of the same group or period in the periodic table is uncertain and results can be biased. To address this inadequacy, a new probabilistic model, based on non-parametric kernel density estimation was developed and optimal bandwidths and testing methods are proposed. Zinc (Zn), cadmium (Cd), and mercury (Hg) of group IIB of the periodic table are widespread in aquatic environments, mostly at small concentrations, but can exert detrimental effects on aquatic life and human health. With these metals as target compounds, the non-parametric kernel density estimation method and several conventional parametric density estimation methods were used to derive acute WQC of metals for protection of aquatic species in China that were compared and contrasted with WQC for other jurisdictions. HC5 values for protection of different types of species were derived for three metals by use of non-parametric kernel density estimation. The newly developed probabilistic model was superior to conventional parametric density estimations for constructing SSDs and for deriving WQC for these metals. HC5 values for the three metals were inversely proportional to atomic number, which means that the heavier atoms were more potent toxicants. The proposed method provides a novel alternative approach for developing SSDs that could have wide application prospects in deriving WQC and use in assessment of risks to ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow P (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aqua Toxicol 76:160–202

    Article  CAS  Google Scholar 

  • Anzecc A (2000) Australian and New Zealand guidelines for fresh and marine water quality National water quality management strategy paper 4

  • Barnthouse LW (2004) Quantifying population recovery rates for ecological risk assessment. Environ Toxicol Chem 23:500–508

    Article  CAS  Google Scholar 

  • Brattin WJ, Barry TM, Chiu N (1996) Monte Carlo modeling with uncertain probability density functions. Human Ecolol Risk Assess 2:820–840

    Article  Google Scholar 

  • Brock T, Arts GH, Maltby L, Van den Brink PJ (2006) Aquatic risks of pesticides, ecological protection goals, and common aims in European Union legislation. Integr Environ Assess Manag 2:e20–e46

    Article  Google Scholar 

  • Buckler D, Mayer F, Ellersieck M, Asfaw A (2003) Evaluation of minimum data requirements for acute toxicity value extrapolation with aquatic organisms. US Environmental Protection Agency report no. EPA/600/R-03/104. Washington, DC

  • Campbell KR, Bartell SM, Shaw JL (2000) Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study II. Approaches using quotients and distributions. Environ Toxicol Chem 19:760–774

    Article  CAS  Google Scholar 

  • Cao YJ, Wu FC (2010) Establishment of water quality criteria for cadmium in freshwater (In Chinese). J Anhui Agri Sci 3:1378–1380

    Google Scholar 

  • CCME (2007) A protocol for the derivation of water quality guidelines for the protection of Auqtic Life

  • Chen XR, CG X (1993) A course in nonparametric statistics. Huadong Normal University Press, Shang Hai

    Google Scholar 

  • Cunnane C (1978) Unbiased plotting positions—a review. J Hydrol 37:205–222

    Article  Google Scholar 

  • Epanechnikov VA (1969) Non-parametric estimation of a multivariate probability density. Theory Probabi Applic 14:153–158

    Article  Google Scholar 

  • Feng C, Wu F, Dyer S, Chang H, Zhao X (2013) Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China. Chemosphere 90:1177–1183

    Article  CAS  Google Scholar 

  • Forbes T, Forbes V (1993) A critique of the use of distribution-based extrapolation models in ecotoxicology. Functional Ecology:249–254

  • Fox M (1979) Nutritional influences on metal toxicity: cadmium as a model toxic element. Environ Health Perspect 29:95

    Article  CAS  Google Scholar 

  • Fox DR (2010) A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Ecotoxicol Environ Saf 73:123–131

    Article  CAS  Google Scholar 

  • Friberg L, Nordberg GF, Vouk VB (1979) Handbook on the toxicology of metals. Elsevier North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Giesy JP, Solomon KR, Coats JR, Dixon KR, Giddings JM, Kenaga EE (1999) Chlorpyrifos: ecological risk assessment in North American aquatic environments. Springer

  • Godbold D, Hüttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environ Pollut Ser A Ecol Biol 38:375–381

    Article  CAS  Google Scholar 

  • Grist EP, Leung KM, Wheeler JR, Crane M (2002) Better bootstrap estimation of hazardous concentration thresholds for aquatic assemblages. Environ Toxicol Chem 21:1515–1524

    Article  CAS  Google Scholar 

  • Guan R, Wang W-X (2004) Cd and Zn uptake kinetics in Daphnia magna in relation to Cd exposure history. Environ Sci Technol 38:6051–6058

    Article  CAS  Google Scholar 

  • Hanna SR, Chang JC, Fernau ME (1998) Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables. Atmos Environ 32:3619–3628

    Article  CAS  Google Scholar 

  • Hayashi TI, Kashiwagi N (2010) A Bayesian method for deriving species-sensitivity distributions: selecting the best-fit tolerance distributions of taxonomic groups. Hum Ecol Risk Assess: Int J 16:251–263

    Article  CAS  Google Scholar 

  • Haynes WM (2012) CRC handbook of chemistry and physics. CRC press, London

    Google Scholar 

  • Klimisch H-J, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5

    Article  CAS  Google Scholar 

  • Kolmogorov AN (1933) Sulla determinazione empirica di una legge di distribuzione. na

  • Kong XZ, He W, Qin N, He FS, Wang Y, Ouyan HL, Xu FL (2011) Assessing acute ecological risks of heavy metals to freshwater organisms by species sensitivity distributions (In Chinese). China Environ Sci 9:1555–1562

    Google Scholar 

  • Kooijman S (1987) A safety factor for LC<sub>50</sub>values allowing for differences in sensitivity among species. Water Res 21:269–276

    Article  CAS  Google Scholar 

  • Li HX, Zhang RC, Wu FC, Guo GH, Feng CL (2012) Comparison of mercury species sensitivity distributions of freshwater biota in China and the United States (In Chinese). Acta Sci Circumst 5:1183–1191

    Google Scholar 

  • Liu YD, Wu FC, Mu YS, Feng CL, Fang YX, Chen LL, Giesy JP (2014) Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids. Rev Environ Contam Toxicol 230:35–57. doi:10.1007/978-3-319-04411-8_2

    CAS  Google Scholar 

  • Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46:68–78

    Article  Google Scholar 

  • McCabe P, Korb O, Cole J (2014) Kernel density estimation applied to bond length, bond angle and torsion angle distributions. J Chem Inform Model

  • Newman MC, Ownby DR, Mezin LC, Powell DC, Christensen TR, Lerberg SB, Anderson BA (2000) Applying species‐sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species. Environ Toxicol Chem 19:508–515

    CAS  Google Scholar 

  • Pan HT (2011) The Bootstrap method and its application in the nonparametric kernel estimation (In Chinese). Stat Decision 23:22–24

    Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. The annals of mathematical statistics:1065–1076

  • Pavičić J, Škreblin M, Kregar I, Tušek-Žnidarič M, Stegnart P (1994) Embryo-larval tolerance of Mytilus galloprovincialis, exposed to the elevated sea water metal concentrations—I. Toxic effects of Cd, Zn and Hg in relation to the metallothionein level. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 107:249–257

    Article  Google Scholar 

  • Pennington DW (2003) Extrapolating ecotoxicological measures from small data sets. Ecotoxicol Environ Saf 56:238–250

    Article  CAS  Google Scholar 

  • Posthuma L, Suter G, TP T (2002) Species sensitivity distributions in ecotoxicology. Lewis, Boca Raton

    Google Scholar 

  • Poynton HC et al (2007) Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol 41:1044–1050

    Article  CAS  Google Scholar 

  • Qin Z, Li W, Xiong X (2011) Estimating wind speed probability distribution using kernel density method. Electric Power Syst Res 81:2139–2146

    Article  Google Scholar 

  • Rao BLSP (1983) Nonparametric functional estimation. Academic, New York

    Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

    Article  Google Scholar 

  • Shao Q (2000) Estimation for hazardous concentrations based on NOEC toxicity data: an alternative approach. Environmetrics 11:583–595

    Article  CAS  Google Scholar 

  • Sharma A, Mukherjee A, Talukder G (1985) Modification of cadmium toxicity in biological systems by other metals. Curr Sci 54:539–549

    CAS  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis vol 26. CRC press

  • Smirnoff N (1939) Sur les écarts de la courbe de distribution empirique. Matematicheskii Sbornik 48:3–26

    Google Scholar 

  • Smith EP, Cairns J Jr (1993) Extrapolation methods for setting ecological standards for water quality: statistical and ecological concerns. Ecotoxicology 2:203–219

    Article  CAS  Google Scholar 

  • Solomon KR et al (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76

    Article  CAS  Google Scholar 

  • Stephen CE, Mount DI, Hansen DJ, Gentile JR, Chapman GA, Brungs WA (1985) Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. United States Environmental Protection Agency, Office of Research and Development, Washington DC

    Google Scholar 

  • TenBrook PL, Palumbo AJ, Fojut TL, Hann P, Karkoski J, Tjeerdema RS (2010) The University of California-Davis Methodology for deriving aquatic life pesticide water quality criteria. In: Reviews of Environmental Contamination and Toxicology Volume 209. Springer, pp 1–155

  • U.S.EPA (1976) Quality criteria for water. National Technical Information Service, Washington, DC

    Google Scholar 

  • U.S.EPA (1980) Ambient water quality criteria for mercury. Office of Water, Washington DC

    Google Scholar 

  • U.S.EPA (1996) Water quality criteria documents for the protection of aquatic life in ambient water. Office of Water, Washington, DC

    Google Scholar 

  • U.S.EPA (1998) Guidelines for ecological risk assessment. US Environmental protection agency

  • U.S.EPA (2001) 2001 update of ambient water quality criteria for cadmium. Office of Water, Washington, DC

    Google Scholar 

  • U.S.EPA (2005) Methods/indicators for determining when metals are the cause of biological impairments of rivers and streams: species sensitivity distributions and chronic exposure-response relationships from laboratory data. Office of Research and Development, Cincinnati

    Google Scholar 

  • Van der Hoeven N (2001) Estimating the 5-percentile of the species sensitivity distributions without any assumptions about the distribution. Ecotoxicology 10:25–34

    Article  Google Scholar 

  • Van Sprang PA, Verdonck FA, Vanrolleghem PA, Vangheluwe ML, Janssen CR (2004) Probabilistic environmental risk assessment of zinc in Dutch surface waters. Environ Toxicol Chem 23:2993–3002

    Article  Google Scholar 

  • Van Straalen NM (2002) Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc. Environ Toxicol Pharmacol 11:167–172

    Article  Google Scholar 

  • Van Straalen NM, Denneman CA (1989) Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf 18:241–251

    Article  Google Scholar 

  • Van Vlaardingen P, Traas T, Wintersen A, Aldenberg T (2004) Etx2. 0. A program to calculate hazardous concentrations and fraction affected, based on normally-distributed toxicity data. RIVM report (and software) 601501028/2004. National Institute for Public Health and the Environment, The Netherlands

    Google Scholar 

  • Vardy DW, Tompsett AR, Sigurdson JL, Doering JA, Zhang X, Giesy JP, Hecker M (2011) Effects of subchronic exposure of early life stages of white sturgeon (Acipenser transmontanus) to copper, cadmium, and zinc. Environ Toxicol Chem 30:2497–2505

    Article  CAS  Google Scholar 

  • Walker JD, Enache M, Dearden JC (2003) Quantitative cationic‐activity relationships for predicting toxicity of metals. Environ Toxicol Chem 22:1916–1935

    Article  CAS  Google Scholar 

  • Wang B, Yu G, Huang J, Hu H (2008) Development of species sensitivity distributions and estimation of HC5 of organochlorine pesticides with five statistical approaches. Ecotoxicology 17:716–724

    Article  CAS  Google Scholar 

  • Warne MSJ (2002) Derivation of the Australian and New Zealand water quality guidelines for toxicants Australasian Journal of. Ecotoxicology 7:123–136

    Google Scholar 

  • Wheeler J, Grist E, Leung K, Morritt D, Crane M (2002) Species sensitivity distributions: data and model choice. Mar Pollut Bull 45:192–202

    Article  CAS  Google Scholar 

  • Wu FC (ed) (2012) Theory, methodology and case study of water quality criteria (In Chinese). Science Press, Beijing

    Google Scholar 

  • Wu FC, Feng CL, Cao YJ, Zhang RQ, Li HX, Liao HQ, Zhao XL (2011a) Toxicity characteristic of zinc to freshwater biota and its water quality criteria (In Chinese). Asian Journal of Ecotoxicology 6:367–382

    Google Scholar 

  • Wu FC, M W, Cao YJ, Li HX, Zhang RC, Feng CL, Yan ZG (2011b) Derivation of aquatic life water quality criteria for cadmium in freshwater in China (In Chinese). Res Environ Sci 2:172–184

    Google Scholar 

  • Wu FC, Feng CL, Zhang RC, Li YS, Du DY (2012a) Derivation of water quality criteria for representative water-body pollutants in China. Sci China Earth Sci 55:900–906

    Article  CAS  Google Scholar 

  • Wu FC, Mu YS, Chang H, Zhao XL, Giesy JP, Wu KB (2012b) Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids. Environ Sci Technol 47:446–453

    Article  Google Scholar 

  • Yu DC, Cao WJ, Yu XD (2009) Scale of element electronegativity by intensive electrostatic potential of atomic nucleus and quantity of electricity of atomic valence. Shell Acta Physico-Chimica Sinica 25:155–160

    CAS  Google Scholar 

  • Zhang RQ, Wu FC, Li HX, Feng CL, Guo GH (2012) Deriving aquatic water quality criteria for inorganic mercury in China by species sensitivity distributions (In Chinese). Acta Scientiae Circumstantiae 2:440–449

    Google Scholar 

Download references

Acknowledgments

The present study was supported by the Environmental Public Welfare Program (201409037) and the National Natural Science Foundation of China (Nos. 41130743 and 41473109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengchang Wu.

Additional information

Responsible editor: Thomas Braunbeck

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, F., Giesy, J.P. et al. Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals. Environ Sci Pollut Res 22, 13980–13989 (2015). https://doi.org/10.1007/s11356-015-4602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4602-8

Keywords

Navigation