Skip to main content
Log in

Size distribution of total and water-soluble fractions of particle-bound elements—assessment of possible risks via inhalation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The size distribution of total and water-soluble elemental concentrations in six particle sizes <0.49, 0.49–0.97, 0.97–1.5, 1.5–3.0, 3.0–7.2, and 7.2–30 μm was investigated in Thessaloniki area, N. Greece, at two sites representing urban-traffic and urban-background character during the cold and warm period. The elements As, Cd, Cr, Cu, Pb, Ni, Zn, Ru, and Ir exhibited their highest mass portion in the fine particle mode (0.97–1.5 μm), whereas Al, Ba, Ca, Fe, and Mn occurred predominately in the coarse particle mode (3.0–7.2 μm). The water-soluble elemental fractions exhibited significant spatiotemporal variations and particle size dependence. Possible non-carcinogenic and carcinogenic risks associated with inhalation of particle-bound elements based on total and water-soluble concentrations were in acceptable levels. However, the cumulative risk for all potential particle-bound constituents has to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F (2009) Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 179:1115–1120

    Article  CAS  Google Scholar 

  • Besis A, Botsaropoulou E, Voutsa D, Samara C (2015) Partile-size distribution of polybrominated diphenyl ethers (PBDEs) in the urban agglomeration of Thessaloniki, northern Greece. Atmos Environ 104:176–185

    Article  CAS  Google Scholar 

  • Birmili W, Allen AG, Bary F, Harrison RM (2006) Trace metals concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environ Sci Technol 40:1144–1153

    Article  CAS  Google Scholar 

  • Cakmak S, Dales R, Kauri LM, Mahmud M, Van Ryswyk K, Vanos J, Liu L, Kumarathasan P, Thomson E, Vincent R, Weichenthal S (2014) Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ Pollut 189:208–214

    Article  CAS  Google Scholar 

  • Canepari S, Astolfi ML, Farao C, Maretto M, Frasca D, Marcoccia M, Perrino C (2014) Seasonal variations in the chemical composition of particulate matter: a case study in the Po Valley. Part II: concentration and solubility of micro- and trace elements. Environ Sci Pollut Res 21:4010–4022

    Article  CAS  Google Scholar 

  • Čupr P, Flegrová Z, Franců J, Landlová L, Klanová J (2013) Mineralogical, chemical and toxicological characterization of urban air particles. Environ Int 51:26–34

    Google Scholar 

  • Degrendele C, Okonski K, Melymuk L, Landlová L, Kukučka P, Čupr P, Klanová J (2014) Size specific distribution of the atmospheric particulate PCDD/Fs, dl-PCBs and PAHs on a seasonal scale: implications for cancer risks from inhalation. Atmos Environ 98:410–146

    Article  CAS  Google Scholar 

  • EPA (1999) Compendium of methods for the determination of inorganic compounds in ambient air. EPA/625/R-96/010a

  • Espinosa AJF, Rodriguez MT, De la Rosa FJB, Sanchez JCJ (2002) A chemical speciation of trace metals for fine urban particles. Atmos Environ 36:773–780

    Article  Google Scholar 

  • Franklin M, Koutrakis P, Schwrtz P (2008) The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19:680–689

    Article  Google Scholar 

  • Grigoratos T, Samara C, Voutsa D, Manoli E, Kouras A (2014) Chemical composition and mass closure of ambient coarse particles at traffic and urban-background sites in Thessaloniki, Greece. Environ Sci Pollut Res 21(12):7708–7722

    Article  CAS  Google Scholar 

  • Hays MD, Cho SH, Baldauf R, Dchauer JJ, Shafer M (2011) Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmos Environ 45:925–934

  • Heal MR, Hibbs LR, Agius RM, Beverland IJ (2005) Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Ediburgh, UK. Atmos Environ 39:1417–1430

  • HEAST (1995) Health effect assessment summary tables. FY-1995. EPA 540/R-95/036

  • Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccesibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152

  • IARC (2013) Outdoor air pollution a leading environmental cause of cancer deaths. Press release No221m 17 October 2013. IARC Monographs volume 109

  • IUPAC (1998) International Union of Pure and Applied Chemistry, Compendium of Analytical Nomenclature, Definitive Rules 1997, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Kassomenos PA, Kelessis A, Paschalidou AK, Petrakakis M (2011) Identification of sources and processes affecting particulate pollution in Thessaloniki. Greece Atmos Environ 45:7293–7300

    Article  CAS  Google Scholar 

  • Landlová L, Čupr P, Franců J, Klanová J, Lammel G (2014) Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: Part I. PAHs, PCBs and OCPs and the matrix chemical composition. Environ Sci Pollut Res 51:26–34

    Google Scholar 

  • Manousakas M, Papaefthymiou H, Eleftheriadis K, Katsanou K (2014) Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS. Sci Total Environ 493:694–700

    Article  CAS  Google Scholar 

  • Oeder S, Dietrich S, Weichenmeier I, Schober W, Pusch G, Jorres RA, Schierl R, Nowak D, Fromme H, Behrendt H, Buters JT (2012) Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany. Indoor Air 22:148–158

  • O’Shaughnessy PT, Raabe OG (2003) A comparison of cascade impactor data reduction methods. Aerosol Sci Technol 37:187–200

    Article  Google Scholar 

  • Ostro B, Feng WY, Broadwin R, Green S, Lipsett M (2007) The effects of components of fine air particulate air pollution on mortality in California: results from CALFINE. Environ Health Perspect 115:13–19

    Article  CAS  Google Scholar 

  • Pandey P, Patel DK, Khan AH, Barman SC, Myrthy RC, Kisku GC (2013) Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and metal-bound carcinogenic risk in the population of Lucknow city, India. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:730–745

    Article  CAS  Google Scholar 

  • Petrakakis MJ, Papagiannopoulos NM, Kelessis AG, Tzoumaka PN, Tzourelis G, Kanellopoulou Z, Tsaknia A, Koutsari E, Zoumakis NM (2008) Variation of atmospheric pollutants in Thessaloniki, Greece, during the past two decades. In: Nikolaou K (ed) Proceedings of the third international environmental conference of Macedonia, Thessaloniki, 14–17 Mar 2008, p. 45

  • Petrakakis M.J., Kelessis A.G., Tzoumaka P.N. Samara C (2013) Levels of suspended particulate matter before and after the economic crisis in Thessaloniki Greece. 17th International MESAEP Symposium Istanbul/Turkey, September 28 to October 1, 2013

  • Puls C, Limbeck A, Hann S (2012) Bioaccessibility of palladium and platinum in urban aerosol particulates. Atmos Environ 55:213–219

    Article  CAS  Google Scholar 

  • Romanazzi V, Casazza M, Malandrino M, Maurino V, Piano A, Schilirò T, Gilli G (2014) PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino. Chemosphere 112:210–216

    Article  CAS  Google Scholar 

  • Saffari A, Daher N, Samara C, Voutsa D, Kouras A, Manoli E, Karagkiozidou O, Vlachokostas C, Moussiopoulos N, Shafer MM, Schauer JJ, Sioutas C (2013) Increased biomass burning due to the economic crisis in Greece and its adverse impact on winter-time air quality in Thessaloniki. Environ Sci Technol 47:13313–13320

    Article  CAS  Google Scholar 

  • Sahin UA, Scherbakova K, Onat B (2012) Size distribution and seasonal variation of airborne particulate matter in five areas in Istanbul, Turkey. Environ Sci Pollut Res 19:1198–1209

  • Salma I, Maenhaut W, Zaray G (2002) Comparative study of elemental mass size distributions in urban atmospheric aerosol. Aerosol Sci 33:339–356

    Article  CAS  Google Scholar 

  • Samara C, Voutsa D, Kouras A, Eleftheriadis K, Maggos T, Saraga D, Petrakakis M (2014) Organic and elemental carbon associated to PM10 and PM2.5 at urban sites of northern Greece. Environ Sci Pollut Res 21:1769–1785

    Article  CAS  Google Scholar 

  • Samara C, Voutsa D (2005) Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 59:1197–1206

    Article  CAS  Google Scholar 

  • Shi G, Chen Z, Bi C, Wang L, Teng J, Li Y, Xu S (2011) A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city in China. Atmos Environ 45:764–771

    Article  CAS  Google Scholar 

  • USEPA (1989) Risk assessment guidance for superfund. Vol I: Human health evaluation manual. EPA/540/1-89/002

  • USEPA (2011a) Exposure Factors Handbook: 2011 Edition. EPA/600/R-090/052F, September 2011

  • USEPA (2011b) Methods to develop inhalation cancer risk estimates for chromium and nickel compounds. EPA-452/R-11-0.12, 2011

  • USEPA (2013a) Risk based concentration table. (http://wwwepa.gov/reg3hwmd/risk/human/index.htm)

  • USEPA (2013b) Users guide and background technical document for USEPA regions 9’S preliminary remediation goals. (http://www.epa.gov/region9/superfund/prg/files/04usersguide.pdf)

  • Voutsa D, Samara C, Manoli E, Lazarou D, Tzoumaka P (2014) Ionic composition of PM2.5 at urban sites of northern Greece: secondary inorganic aerosol formation. Environ Sci Pollut Res 21(7):4995–5006

    Article  CAS  Google Scholar 

  • Voutsa D, Samara C (2002) Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos Environ 36:3583–3590

    Article  CAS  Google Scholar 

  • Wiseman CLS, Zereini F (2014) Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos Environ 89:282–289

    Article  CAS  Google Scholar 

  • Wang D, Pakbin P, Shafer MM, Antkiewicz D, Schauer JJ, Sioutas C (2013) Macrophage reactive oxygen species activity of water-soluble and water-insiluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles. Atmos Environ 77:301–310

    Article  CAS  Google Scholar 

  • Zanobetti A, Austin E, Coull BA, Schwartz J, Koutrakis P (2014) Health effects of multi-pollutant profiles. Environ Int 71:13–19

    Article  CAS  Google Scholar 

  • Zanobetti A, Franklin M, Koutrakis P, Schwartz J (2009) Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ Health 8:58–70

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales. Investing in knowledge society through the European Social Fund. Project code/Title: MIS 377304/“Bioactivity of airborne particulates in relation with their size, morphology, and chemical composition”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Voutsa.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Operating conditions of the ICP-AES. (DOCX 23 kb)

Figure S1

Map of the study area. Sampling sites are shown (UT and UB represent urban-traffic and urban-background site, respectively). (DOCX 516 kb)

Figure S2

Non-carcinogenic risk quotients (THQs) in urban traffic (UT) and urban background site (UB) through inhalation of particle-bound elements in alveolar, respirable, and inhalable particle fractions for different population groups. (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voutsa, D., Anthemidis, A., Giakisikli, G. et al. Size distribution of total and water-soluble fractions of particle-bound elements—assessment of possible risks via inhalation. Environ Sci Pollut Res 22, 13412–13426 (2015). https://doi.org/10.1007/s11356-015-4559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4559-7

Keywords

Navigation