Skip to main content

Advertisement

Log in

High abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls in fine aerosols (PM2.5) in Chengdu, China during wintertime haze pollution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Daytime and nighttime fine aerosol (PM2.5) samples were collected during a haze episode in January 2013 within the urban area of Chengdu, southwest China. Aerosol samples were analyzed for low-molecular-weight homologous dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls, as well as organic carbon and elemental carbon. Concentration ranges of diacids, oxoacids, and α-dicarbonyls were 1,400–5,250, 272–1,380, and 88–220 ng m−3, respectively. Molecular distributions of diacids (mean 3,388 ± 943 ng m−3) were characterized by a predominance of oxalic acid (C2; 1,373 ± 427 ng m−3), followed by succinic (C4), terephthalic (tPh), and phthalic (Ph) acids. Such high levels of tPh and Ph were different from those in other Asian cities where malonic acid (C3) is the second or third highest species, mostly owing to significant emissions from coal combustion and uncontrolled waste incineration. High contents of diacids, oxoacids, and α-dicarbonyls were detected on hazy days, suggesting an enhanced emission and/or formation of these organics during such a weather condition. Concentrations of unsaturated aliphatic diacids (e.g., maleic acid) and phthalic acids were higher in nighttime than in daytime. Good positive correlations of C2 with C3, C4, ketomalonic (kC3), pyruvic (Pyr), and glyoxylic (ɷC2) acids in daytime suggest secondary production of C2 via the photooxidation of longer chain diacids and ɷC2. This study demonstrated that both primary emissions and secondary production are important sources of dicarboxylic acids and related compounds in atmospheric aerosols in the Sichuan Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggarwal SG, Kawamura K (2008) Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long‐range atmospheric transport. J Geophys Res 113, D14301

    Article  Google Scholar 

  • Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719

    Article  CAS  Google Scholar 

  • Alier M, Osto MD, Lin Y-H, Surratt JD, Tauler R, Grimalt JO, van Drooge BL (2014) On the origin of water-soluble organic tracer compounds in fine aerosols in two cities: the case of Los Angeles and Barcelona. Environ Sci Pollut Res 21:11649–11660

    Article  CAS  Google Scholar 

  • Beckerman BS, Jerrett M, Serre M, Martin RV, Lee S-J, van Donkelaar A, Ross Z, Su J, Burnett RT (2013) A hybrid approach to estimating national scale spatiotemporal variability of PM2. 5 in the contiguous United States. Environ Sci Technol 47:7233–7241

    CAS  Google Scholar 

  • Bunce NJ, Liu L, Zhu J, Lane DA (1997) Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase. Environ Sci Technol 31:2252–2259

    Article  CAS  Google Scholar 

  • Buxton GV, Malone TN, Salmon GA (1997) Oxidation of glyoxal initiated by OH in oxygenated aqueous solution. J Chem Soc Faraday Trans 93:2889–2891

    Article  CAS  Google Scholar 

  • Cachier H, Brémond M-P, Buat-Ménard P (1989) Carbonaceous aerosols from different tropical biomass burning sources. Nature 340:371–373

    Article  CAS  Google Scholar 

  • Cao JJ, Zhu CS, Tie XX, Geng FH, Xu HM, Ho S, Wang GH, Han YM, Ho KF (2013) Characteristics and sources of carbonaceous aerosols from Shanghai, China. Atmos Chem Phys 13:803–817

    Article  CAS  Google Scholar 

  • Carlton AG, Turpin BJ, Altieri KE, Seitzinger S, Reff A, Lim H-J, Ervens B (2007) Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos Environ 41:7588–7602

    Article  CAS  Google Scholar 

  • Charbouillot T, Gorini S, Voyard G, Parazols M, Brigante M, Deguillaume L, Delort A-M, Mailhot G (2012) Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: formation, fate and reactivity. Atmos Environ 56:1–8

    Article  CAS  Google Scholar 

  • Chen B, Kan H (2008) Air pollution and population health: a global challenge. Environ Health Prev Med 13:94–101

    Article  CAS  Google Scholar 

  • Cheng C, Wang G, Zhou B, Meng J, Li J, Cao J, Xiao S (2013) Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi’an, China during haze and clean periods. Atmos Environ 81:443–449

    Article  CAS  Google Scholar 

  • Crahan KK, Hegg D, Covert DS, Jonsson H (2004) An exploration of aqueous oxalic acid production in the coastal marine atmosphere. Atmos Environ 38:3757–3764

    Article  CAS  Google Scholar 

  • Deng LQ, Qian J, Liao RX, Tong HJ (2012) Pollution characteristics of atmospheric particulates in Chengdu from August to September in 2009 and their relationship with meteorological conditions. China Environ Sci 32:1433–1438

    CAS  Google Scholar 

  • Ebelt ST, Wilson WE, Brauer M (2005) Exposure to ambient and nonambient components of particulate matter: a comparison of health effects. Epidemiology 16:396–405

    Article  Google Scholar 

  • Ervens B, Feingold G, Frost GJ, Kreidenweis SM (2004) A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J Geophys Res 109, D15205

    Article  Google Scholar 

  • Fick J, Nilsson C, Andersson B (2004) Formation of oxidation products in a ventilation system. Atmos Environ 38:5895–5899

    Article  CAS  Google Scholar 

  • Fisseha R, Dommen J, Sax M, Paulsen D, Kalberer M, Maurer R, Höfler F, Weingartner E, Baltensperger U (2004) Identification of organic acids in secondary organic aerosol and the corresponding gas phase from chamber experiments. Anal Chem 76:6535–6540

    Article  CAS  Google Scholar 

  • Fu PQ, Kawamura K, Pavuluri CM, Swaminathan T, Chen J (2010) Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmos Chem Phys 10:2663–2689

    Article  CAS  Google Scholar 

  • Fu PQ, Kawamura K, Usukura K, Miura K (2013) Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. Mar Chem 148:22–32

    Article  CAS  Google Scholar 

  • Grosjean D, Fung K (1984) Hydrocarbons and carbonyls in Los Angeles air. J Air Pollut Control Assoc 34:537–543

    Article  CAS  Google Scholar 

  • Guo S, Hu M, Wang ZB, Slanina J, Zhao YL (2010) Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation. Atmos Chem Phys 10:947–959

    Article  CAS  Google Scholar 

  • He LY, Hu M, Huang XF, Yu BD, Zhang YH, Liu DQ (2004) Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos Environ 38:6557–6564

    Article  CAS  Google Scholar 

  • Hegde P, Kawamura K (2012) Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in Central Himalayan aerosols. Atmos Chem Phys 12:6645–6665

    Article  CAS  Google Scholar 

  • Ho KF, Lee SC, Cao JJ, Kawamura K, Watanabe T, Cheng Y, Chow JC (2006) Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmos Environ 40:3030–3040

    Article  CAS  Google Scholar 

  • Ho KF, Cao JJ, Lee SC, Kawamura K, Zhang RJ, Chow JC, Watson JG (2007) Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. J Geophys Res 112:D22S27

    Google Scholar 

  • Ho KF, Lee SC, Ho SSH, Kawamura K, Tachibana E, Cheng Y, Zhu T (2010) Dicarboxylic acids, ketocarboxylic acids, α‐dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing‐2006). J Geophys Res 115, D19312

    Article  Google Scholar 

  • Ho KF, Ho S, Lee SC, Kawamura K, Zou SC, Cao JJ, Xu HM (2011) Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM 2.5 in Pearl Delta River Region, China. Atmos Chem Phys 11:2197–2208

    Article  CAS  Google Scholar 

  • Huang X, Hu M, He L, Tang X (2005) Chemical characterization of water-soluble organic acids in PM2.5 in Beijing, China. Atmos Environ 39:2819–2827

    Article  CAS  Google Scholar 

  • Huang XF, Yu JZ, He LY, Yuan ZB (2006) Water‐soluble organic carbon and oxalate in aerosols at a coastal urban site in China: size distribution characteristics, sources, and formation mechanisms. J Geophys Res 111, D22212

    Article  Google Scholar 

  • Huebert BJ, Bates T, Russell PB, Shi G, Kim YJ, Kawamura K, Carmichael G, Nakajima T (2003) An overview of ACE‐Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J Geophys Res 108:8633

    Article  Google Scholar 

  • Jang M, Czoschke NM, Lee S, Kamens RM (2002) Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298:814–817

    Article  CAS  Google Scholar 

  • Jung J, Lee H, Kim YJ, Liu XG, Zhang YH, Gu JW, Fan SJ (2009a) Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. J Environ Manage 90:3231–3244

    Article  CAS  Google Scholar 

  • Jung J, Lee H, Kim YJ, Liu XG, Zhang YH, Hu M, Sugimoto N (2009b) Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing‐2006). J Geophys Res 114:D00G02

    Google Scholar 

  • Jung JS, Tsatsral B, Kim YJ, Kawamura K (2010) Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α‐dicarbonyls. J Geophys Res 115, D22203

    Article  Google Scholar 

  • Kawamura K (1993) Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid, and C2-C3 α-dicarbonyls in wet precipitation and aerosol samples by capillary GC and GC/MS. Anal Chem 65:3505–3511

    Article  CAS  Google Scholar 

  • Kawamura K, Ikushima K (1993) Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ Sci Technol 27:2227–2235

    Article  CAS  Google Scholar 

  • Kawamura K, Kaplan IR (1987) Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ Sci Technol 21:105–110

    Article  CAS  Google Scholar 

  • Kawamura K, Pavuluri C (2010) New directions: need for better understanding of plastic waste burning as inferred from high abundance of terephthalic acid in South Asian aerosols. Atmos Environ 44:5320–5321

    Article  CAS  Google Scholar 

  • Kawamura K, Sakaguchi F (1999) Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J Geophys Res 104:3501–3509

    Article  CAS  Google Scholar 

  • Kawamura K, Yasui O (2005) Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos Environ 39:1945–1960

    Article  CAS  Google Scholar 

  • Kawamura K, Kasukabe H, Barrie LA (1996a) Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atmos Environ 30:1709–1722

    Article  CAS  Google Scholar 

  • Kawamura K, Steinberg S, Kaplan IR (1996b) Concentrations of monocarboxylic and dicarboxylic acids and aldehydes in southern California wet precipitations: comparison of urban and nonurban samples and compositional changes during scavenging. Atmos Environ 30:1035–1052

    Article  CAS  Google Scholar 

  • Kawamura K, Imai Y, Barrie LA (2005) Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events. Atmos Environ 39:599–614

    Article  CAS  Google Scholar 

  • Kawamura K, Tachibana E, Okuzawa K, Aggarwal SG, Kanaya Y, Wang ZF (2013) High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China plain during wheat burning season. Atmos Chem Phys 13:8285–8302

    Article  CAS  Google Scholar 

  • Kim HS, Huh JB, Hopke PK, Holsen TM, Yi SM (2007) Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos Environ 41:6762–6770

    Article  CAS  Google Scholar 

  • Kroll JH, Ng NL, Murphy SM, Varutbangkul V, Flagan RC, Seinfeld JH (2005) Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J Geophys Res 110, D23207

    Article  Google Scholar 

  • Kundu S, Kawamura K, Andreae T, Hoffer A, Andreae M (2010) Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmos Chem Phys 10:2209–2225

    Article  CAS  Google Scholar 

  • Lee S, Ho K, Chan L, Zielinska B, Chow JC (2001) Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. Atmos Environ 35:5949–5960

    Article  CAS  Google Scholar 

  • Lei HC, Tanner PA, Huang MY, Shen ZL, Wu YX (1997) The acidification process under the cloud in southwest China: observation results and simulation. Atmos Environ 31:851–861

    Article  CAS  Google Scholar 

  • Li YC, Yu JZ (2010) Composition profile of oxygenated organic compounds and inorganic ions in PM2. 5 in Hong Kong. Environ Chem 7:338–349

    Article  CAS  Google Scholar 

  • Li Y, Allen PA, Densmore AL, Qiang X (2003) Evolution of the Longmen Shan foreland basin (western Sichuan, China) during the Late Triassic Indosinian orogeny. Basin Res 15:117–138

    Article  Google Scholar 

  • Liggio J, Li SM, McLaren R (2005) Reactive uptake of glyoxal by particulate matter. J Geophys Res 110, D10304

    Article  Google Scholar 

  • Lim HJ, Carlton AG, Turpin BJ (2005) Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ Sci Technol 39:4441–4446

    Article  CAS  Google Scholar 

  • Liu Y, Zhu L, Shen X (2001) Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ Sci Technol 35:840–844

    Article  CAS  Google Scholar 

  • Ma S, Pa P, Song J, Zhao J, He L, Sheng G, Fu J (2010) Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China. Atmos Res 98:176–182

    Article  CAS  Google Scholar 

  • Miyazaki Y, Aggarwal SG, Singh K, Gupta PK, Kawamura K (2009a) Dicarboxylic acids and water‐soluble organic carbon in aerosols in New Delhi, India, in winter: characteristics and formation processes. J Geophys Res 114, D19206

    Article  Google Scholar 

  • Miyazaki Y, Kondo Y, Shiraiwa M, Takegawa N, Miyakawa T, Han S, Kita K, Hu M, Deng ZQ, Zhao Y (2009b) Chemical characterization of water‐soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. J Geophys Res 114, D14208

    Article  Google Scholar 

  • Miyazaki Y, Kawamura K, Sawano M (2010) Size distributions and chemical characterization of water‐soluble organic aerosols over the western North Pacific in summer. J Geophys Res 115, D23210

    Article  Google Scholar 

  • Mkoma SL, Kawamura K (2013) Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons. Atmos Chem Phys 13:2235–2251

    Article  Google Scholar 

  • Narukawa M, Kawamura K, Takeuchi N, Nakajima T (1999) Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophys Res Lett 26:3101–3104

    Article  CAS  Google Scholar 

  • Nel A (2005) Air pollution-related illness: effects of particles. Science 308:804–806

    Article  CAS  Google Scholar 

  • Nirmalkar J, Deb MK, Deshmukh DK, Tsai YI, Verma SK (2014) Molecular markers in ambient aerosol in the Mahanadi Riverside Basin of eastern central India during winter. Environ Sci Pollut Res. doi:10.1007/s11356-11014-13416-11354

    Google Scholar 

  • Osborne JM, Lambert FH (2014) The missing aerosol response in twentieth-century mid-latitude precipitation observations. Nature Climate Change

  • Pavuluri CM, Kawamura K, Swaminathan T (2010) Water‐soluble organic carbon, dicarboxylic acids, ketoacids, and α‐dicarbonyls in the tropical Indian aerosols. J Geophys Res 115, D11302

    Article  Google Scholar 

  • Perrone M, Gualtieri M, Consonni V, Ferrero L, Sangiorgi G, Longhin E, Ballabio D, Bolzacchini E, Camatini M (2013) Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environ Pollut 176:215–227

    Article  CAS  Google Scholar 

  • Rinaldi M, Decesari S, Carbone C, Finessi E, Fuzzi S, Ceburnis D, O’Dowd CD, Sciare J, Burrows JP, Vrekoussis M (2011) Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. J Geophys Res 116, D16204

    Article  Google Scholar 

  • Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF (2006) Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environ Sci Technol 40:7820–7827

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BR (1991) Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environ Sci Technol 25:1112–1125

    Article  CAS  Google Scholar 

  • Saarikoski S, Timonen H, Saarnio K, Aurela M, Järvi L, Keronen P, Kerminen V-M, Hillamo R (2008) Sources of organic carbon in fine particulate matter in northern European urban air. Atmos Chem Phys 8:6281–6295

    Article  CAS  Google Scholar 

  • Sandradewi J, Prevot AS, Szidat S, Perron N, Alfarra MR, Lanz VA, Weingartner E, Baltensperger U (2008) Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ Sci Technol 42:3316–3323

    Article  CAS  Google Scholar 

  • Schlesinger RB (2007) The health impact of common inorganic components of fine particulate matter (PM2. 5) in ambient air: a critical review. Inhal Toxicol 19:811–832

    Article  CAS  Google Scholar 

  • Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, Newby DE, Mills NL (2013) Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382:1039–1048

    Article  CAS  Google Scholar 

  • Singh HB, Salas LJ, Cantrell BK, Redmond RM (1985) Distribution of aromatic hydrocarbons in the ambient air. Atmos Environ 19:1911–1919

    Article  CAS  Google Scholar 

  • Suh I, Zhang R, Molina LT, Molina MJ (2003) Oxidation mechanism of aromatic peroxy and bicyclic radicals from OH-toluene reactions. J Am Chem Soc 125:12655–12665

    Article  CAS  Google Scholar 

  • Sun Y, Zhuang G, Tang A, Wang Y, An Z (2006) Chemical characteristics of PM2. 5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol 40:3148–3155

    Article  CAS  Google Scholar 

  • Tao J, Chai FH, Zhu LH, Gao J, Cao JJ, Wang QY, Luo L (2011) Characteristics and sources of carbonaceous aerosol in the urban Chengdu during spring of 2009. Acta Sci Circumst 31:2756–2761

    CAS  Google Scholar 

  • Volkamer R, Platt U, Wirtz K (2001) Primary and secondary glyoxal formation from aromatics: experimental evidence for the bicycloalkyl-radical pathway from benzene, toluene, and p-xylene. J Phys Chem A 105:7865–7874

    Article  CAS  Google Scholar 

  • Wang GH, Kawamura K (2005) Molecular characteristics of urban organic aerosols from Nanjing: a case study of a mega-city in China. Environ Sci Technol 39:7430–7438

    Article  CAS  Google Scholar 

  • Wang GH, Niu SL, Liu CE, Wang LS (2002) Identification of dicarboxylic acids and aldehydes of PM10 and PM2. 5 aerosols in Nanjing, China. Atmos Environ 36:1941–1950

    Article  CAS  Google Scholar 

  • Wang SL, Chai FH, Zhang YH, Zhou LD, Wang QL (2004) Analysis on the sources and characters of particles in Chengdu. Sci Geogr Sin 24:488–492

    CAS  Google Scholar 

  • Wang Y, Zhuang G, Chen S, An Z, Zheng A (2007) Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China. Atmos Res 84:169–181

    Article  CAS  Google Scholar 

  • Wang G, Kawamura K, Xie M, Hu S, Gao S, Cao J, An Z, Wang Z (2009a) Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmos Chem Phys 9:8869–8882

    Article  CAS  Google Scholar 

  • Wang GH, Kawamura K, Xie MJ, Hu SY, Cao JJ, An ZS, Waston JG, Chow JC (2009b) Organic molecular compositions and size distributions of Chinese summer and autumn aerosols from Nanjing: characteristic haze event caused by wheat straw burning. Environ Sci Technol 43:6493–6499

    Article  CAS  Google Scholar 

  • Wang Y, Che H, Ma J, Wang Q, Shi G, Chen H, Goloub P, Hao X (2009c) Aerosol radiative forcing under clear, hazy, foggy, and dusty weather conditions over Beijing, China. Geophys Res Lett 36, L06804

    Google Scholar 

  • Wang G, Kawamura K, Cheng C, Li J, Cao J, Zhang RJ, Zhang T, Liu S, Zhao Z (2012) Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids, and alpha-dicarbonyls in size-resolved atmospheric particles from Xi’an City, China. Environ Sci Technol 46:4783–4791

    Article  CAS  Google Scholar 

  • Warneck P (2003) In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos Environ 37:2423–2427

    Article  CAS  Google Scholar 

  • Watson JG, Chow JC, Houck JE (2001) PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43:1141–1151

    Article  CAS  Google Scholar 

  • Yang F, Huang L, Duan F, Zhang W, He K, Ma Y, Brook J, Tan J, Zhao Q, Cheng Y (2011) Carbonaceous species in PM 2.5 at a pair of rural/urban sites in Beijing, 2005–2008. Atmos Chem Phys 11:7893–7903

    Article  CAS  Google Scholar 

  • Yao XH, Lau AP, Fang M, Chan CK, Hu M (2003) Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 2—dicarboxylic acids. Atmos Environ 37:3001–3007

    Article  CAS  Google Scholar 

  • Ye B, Ji X, Yang H, Yao X, Chan CK, Cadle SH, Chan T, Mulawa PA (2003) Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos Environ 37:499–510

    Article  CAS  Google Scholar 

  • Yu JZ, Huang XF, Xu JH, Hu M (2005) When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate. Environ Sci Technol 39:128–133

    Article  CAS  Google Scholar 

  • Zhao YL, Hu M, Slanina S, Zhang YH (2007) Chemical compositions of fine particulate organic matter emitted from Chinese cooking. Environ Sci Technol 41:99–105

    Article  CAS  Google Scholar 

  • Zimmermann J, Poppe D (1996) A supplement for the RADM2 chemical mechanism: the photooxidation of isoprene. Atmos Environ 30:1255–1269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 41173022, 41175106), the West Light Foundation of the Chinese Academy of Sciences, and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB05030305). This study was also in part supported by Grant-in-aid No. 24221001 from the Japan Society for the Promotion of Science (JSPS). P.F. appreciates the financial support from the “One Hundred Talents” program of the Chinese Academy of Sciences. The authors thank Mr. Lv Long for his help during sample collection. All data presented in this paper are freely available upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingqing Fu.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xd., Yang, Z., Fu, P. et al. High abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls in fine aerosols (PM2.5) in Chengdu, China during wintertime haze pollution. Environ Sci Pollut Res 22, 12902–12918 (2015). https://doi.org/10.1007/s11356-015-4548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4548-x

Keywords

Navigation