Skip to main content
Log in

Preparation and characterization of humic acid–carbon hybrid materials as adsorbents for organic micro-pollutants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present work involves the preparation of novel adsorbent materials by the insolubilization and hybridization of humic acid (HA) with carbon. The prepared materials were characterized by N2 adsorption, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance, and low-field nuclear magnetic resonance (NMR) relaxometry on wetted samples. The water solubility of these materials and the lack of effect of oxidants were also confirmed. With this background, the adsorption capacities toward phenol, 2,4,6-tricholrophenol, and atrazine were evaluated, using these as model compounds for organic micropollutants of concern in water. Experimental results show that the prepared materials are mesoporous and have a higher surface area than humic acid and even than the porous carbon in the case of carbon coating. They retain the basic features of the starting materials with lowered functional group content. Moreover, there are interesting new features. NMR relaxometry shows that equilibration of water uptake is very fast, making use in water simple. They have higher adsorption capacities than the pure materials, and they can be applied under a wide range of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, AWWA and WEF, Washington

    Google Scholar 

  • Bambrough CM, Slade RCT, Williams RT (1998) Synthesis of a large pore phenyl-modified mesoporous silica and its characterization by nitrogen and benzene sorption. J Mater Chem 8:569–571. doi:10.1039/A706328H

    Article  CAS  Google Scholar 

  • Celebi O, Kilikli A, Erten HN (2009) Sorption of radioactive cesium and barium ions onto solid humic acid. J Hazard Mater 168:695–703. doi:10.1016/j.jhazmat.2009.02.090

    Article  CAS  Google Scholar 

  • Chang CF, Chang CY, Tsai WT (2000) Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. J Colloid Interface Sci 232:45–49. doi:10.1006/jcis.2000.7171

    Article  CAS  Google Scholar 

  • Chen H, Berndtsson R, Ma M, Zhu K (2009) Characterization of insolubilized humic acid and its sorption behaviors. Environ Geol 57:1847–1853. doi:10.1007/s00254-008-1472-0

    Article  CAS  Google Scholar 

  • EPA (1989) Analysis of organohalide pesticides and commercial polychlorinated biphenyl (PCB) products in water by microextraction and gas chromatography. Method 505.2. Office of Research and Development, US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • EPA (1996) Analysis of trihalomethanes in drinking water by liquid/liquid extraction. Method 501.2. Genium, Schenectady

    Google Scholar 

  • Everett DH (1971) Manual of symbols and terminology for physicochemical quantities and units. Appendix II: defnitions, terminology and symbols in colloid and surface chemistry. Pure Appl Chem 31:577–638

    Google Scholar 

  • Fierro V, Torné-Fernández V, Montané D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater 111:276–284. doi:10.1016/j.micromeso.2007.08.002

    Article  CAS  Google Scholar 

  • Gezici O, Kara H, Ersöz M, Abali Y (2005) The sorption behavior of a nickel-insolubilized humic acid system in a column arrangement. J Colloid Interface Sci 292:381–391. doi:10.1016/j.jcis.2005.06.009

    Article  CAS  Google Scholar 

  • Gezici O, Kara H, Ayar A, Topkafa M (2007a) Sorption behavior of Cu(II) ions on insolubilized humic acid under acidic conditions: an application of Scatchard plot analysis in evaluating the pH dependence of specific and nonspecific bindings. Sep Purif Technol 55:132–139. doi:10.1016/j.seppur.2006.11.012

    Article  CAS  Google Scholar 

  • Gezici O, Kara H, Yanık S, Ayyildiz HF, Kucukkolbasi S (2007b) Investigating sorption characteristics of copper ions onto insolubilized humic acid by using a continuously monitored solid phase extraction technique. Colloids Surf A Physicochem Eng Asp 298:129–138. doi:10.1016/j.colsurfa.2006.12.007

    Article  CAS  Google Scholar 

  • Ghaffari A, Tehrani M, Husain S, Anbia M, Azar P (2014) Adsorption of chlorophenols from aqueous solution over amino-modified ordered nanoporous silica materials. J Nanostruct Chem 4:1–10. doi:10.1007/s40097-014-0114-1

    Article  Google Scholar 

  • Guo S, Peng J, Li W, Yang K, Zhang L, Zhang S, Xia H (2009) Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255:8443–8449. doi:10.1016/j.apsusc.2009.05.150

    Article  CAS  Google Scholar 

  • Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147:381–394. doi:10.1016/j.jhazmat.2007.01.021

    Article  CAS  Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184. doi:10.1021/es061817g

    Article  CAS  Google Scholar 

  • Ihsan HD (2013) Removal of phenol from industrial wastewater using sawdust research inventy. Int J Eng Sci 3:25–31

    Google Scholar 

  • Inagaki M, Okada Y, Miura H, Konno H (1999) Preparation of carbon-coated transition metal particles from mixtures of metal oxide and polyvinylchloride. Carbon 37:329–334. doi:10.1016/S0008-6223(98)00200-0

    Article  CAS  Google Scholar 

  • Inagaki M, Hirose Y, Matsunaga T, Tsumura T, Toyoda M (2003) Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution. Carbon 41:2619–2624. doi:10.1016/S0008-6223(03)00340-3

    Article  CAS  Google Scholar 

  • Inagaki M, Kobayashi S, Kojin F, Tanaka N, Morishita T, Tryba B (2004) Pore structure of carbons coated on ceramic particles. Carbon 42:3153–3158. doi:10.1016/j.carbon.2004.07.029

    Article  CAS  Google Scholar 

  • Klavins M, Eglite L (2002) Immobilisation of humic substances. Colloids Surf A Physicochem Eng Asp 203:47–54. doi:10.1016/S0927-7757(01)01066-4

    Article  CAS  Google Scholar 

  • Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28:190–198. doi:10.1016/j.indcrop.2008.02.012

    Article  CAS  Google Scholar 

  • Liu JC, Huang CP (1992) Adsorption of some substituted phenols onto hydrous ZnS(s). J Colloid Interface Sci 153:167–176. doi:10.1016/0021-9797(92)90308-9

    Article  CAS  Google Scholar 

  • Lowry GV, Casman EA (2009) Nanomaterial transport, transformation, and fate in the environment. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. NATO science for peace and security series c: environmental security. Springer, Netherlands, pp 125–137. doi:10.1007/978-1-4020-9491-0_9

    Google Scholar 

  • Manalo FP, Kantzas A, Langford CH (2003) Soil wettability as determined from using low-field nuclear magnetic resonance. Environ Sci Technol 37:2701–2706. doi:10.1021/es0259685

    Article  CAS  Google Scholar 

  • Marongiu A, Faravelli T, Bozzano G, Dente M, Ranzi E (2003) Thermal degradation of poly(vinyl chloride). J Anal Appl Pyrolsis 70:519–553. doi:10.1016/S0165-2370(03)00024-X

    Article  CAS  Google Scholar 

  • Mohamed EF, Andriantsiferana C, Wilhelm AM, Delmas H (2011) Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon. Environ Technol 32:1325–1336. doi:10.1080/09593330.2010.536783

    Article  CAS  Google Scholar 

  • Moreno-Castilla C, Rivera-Utrilla J, López-Ramón MV, Carrasco-Marín F (1995) Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon 33:845–851. doi:10.1016/0008-6223(94)00182-Y

    Article  CAS  Google Scholar 

  • Mylotte R, Byrne CMP, Chang RR, Dalton C, Hayes MHB (2013) Studies of humic substances from sediments in Galway Bay, Ireland. In: He Y, Xu J, Wu J (eds) Functions of natural organic matter in changing environment. Springer, Netherlands, pp 129–133. doi:10.1007/978-94-007-5634-2_23

    Chapter  Google Scholar 

  • Nevskaia DM, Santianes A, Munoz V, Guerrero-Ruiz A (1999) Interaction of aqueous solutions of phenol with commercial activated carbons: an adsorption and kinetic study. Carbon 37:1065–1074. doi:10.1016/S0008-6223(98)00301-7

    Article  CAS  Google Scholar 

  • Qu J (2008) Research progress of novel adsorption processes in water purification: a review. J Environ Sci 20:1–13. doi:10.1016/S1001-0742(08)60001-7

    Article  CAS  Google Scholar 

  • Rice JA, MacCarthy P (1991) Statistical evaluation of the elemental composition of humic substances. Org Geochem 17:635–648. doi:10.1016/0146-6380(91)90006-6

    Article  CAS  Google Scholar 

  • Seki H, Suzuki A (1995) Adsorption of heavy metal ions onto insolubilized humic acid. J Colloid Interface Sci 171:490–494. doi:10.1006/jcis.1995.1207

    Article  CAS  Google Scholar 

  • Singh KP, Malik A, Sinha S, Ojha P (2008) Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J Hazard Mater 150:626–641. doi:10.1016/j.jhazmat.2007.05.017

    Article  CAS  Google Scholar 

  • Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A Math Phys Eng Sci 368:1333–1383. doi:10.1098/rsta.2009.0273

    Article  CAS  Google Scholar 

  • Streat M, Patrick JW, Perez MJC (1995) Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons. Water Res 29:467–472. doi:10.1016/0043-1354(94)00187-C

    Article  CAS  Google Scholar 

  • Tamer A, Ismail A, Mohd A, Ahmad AF (2012) Review: comparison of agricultural by-products activated carbon production methods using surface area response. Paper presented at the Awam International Conference on Civil Engineering (AICCE’12). Geohazard Information Zonation (GIZ’12), Park Royal Penang Resort, 28th–30th August 2012

  • Tancredi N, Medero N, Möller F, Píriz J, Plada C, Cordero T (2004) Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J Colloid Interface Sci 279:357–363. doi:10.1016/j.jcis.2004.06.067

    Article  CAS  Google Scholar 

  • Todoruk TR, Litvina M, Kantzas A, Langford CH (2003) Low-field NMR relaxometry: a study of interactions of water with water-repellant soils. Environ Sci Technol 37:2878–2882. doi:10.1021/es026295t

    Article  CAS  Google Scholar 

  • Ulrich HJ, Stone AT (1989) The oxidation of chlorophenols adsorbed to manganese oxide surfaces. Environ Sci Technol 23:421–428. doi:10.1021/es00181a006

    Article  CAS  Google Scholar 

  • Xiaoli C, Shimaoka T, Qiang G, Youcai Z (2008) Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13C CP/MAS NMR and TMAH-Py-GC/MS. Waste Manag 28:896–903. doi:10.1016/j.wasman.2007.02.004

    Article  Google Scholar 

  • Zullig JJ, Morse JW (1988) Interaction of organic acids with carbonate mineral surfaces in seawater and related solutions: I. Fatty acid adsorption. Geochim Cosmochim Acta 52:1667–1678. doi:10.1016/0016-7037(88)90235-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Egyptian cultural affairs and missions sector through a scientific channel program between the National Research Centre, Egypt and University of Calgary, Canada. Some assistance for experiments in Calgary came from the Natural Sciences and Engineering Research Council of Canada.

Conflict of interest

The authors declare no conflict of interest. The sponsors had no role in study design, data collection analysis or interpretation, writing of the manuscript or the decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad K. Radwan.

Additional information

Responsible editor: Roland Kallenborn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, E.K., Ghafar, H.H.A., Moursy, A.S. et al. Preparation and characterization of humic acid–carbon hybrid materials as adsorbents for organic micro-pollutants. Environ Sci Pollut Res 22, 12035–12049 (2015). https://doi.org/10.1007/s11356-015-4468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4468-9

Keywords

Navigation