Skip to main content
Log in

The phytotoxicity of ionic liquids from natural pool of (−)-menthol with tetrafluoroborate anion

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Over the last several decades, ionic liquids have become a promising alternative to conventional organic solvents. Initially, ionic liquids were described as “environmentally friendly” substances. However, the results of numerous studies proved that the effects of these compounds on individual ecosystems might be adverse. The presented paper discusses the effect of ionic salts containing natural chiral substituent: (1R,2S,5R)-(−)-menthol in cation and a tetrafluoroborate anion of a general formula of [Cn-Im-Men][BF4] of implementation into the soil on the growth of spring barley and common radish in their early development stages. The obtained results showed that the greatest phytotoxicity was exhibited by ionic liquids containing substituents with the smallest possible number of carbon atoms. The further increase in the length of the chain did not increase the toxicity of these salts for terrestrial plants. Moreover, a compound with a substituent having a chain length of 11 carbon atoms was found to be non-toxic to common radish. The experiment under discussion showed also the effect of these tetrafluoroborates, used in the form of spray, on the development of common sorrel, gallant soldier and white goosefoot. The tests carried out also showed that the most toxic were the compounds with 1 and 3 carbon atoms. The phytotoxicity of tetrafluoroborates was positively correlated with the concentration of these compounds in the soil and was dependent on the genetic features of the genres and varieties of plants used in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bałczewski P, Bachowska B, Białas T, Biczak R, Wieczorek WM, Balińska A (2007) Synthesis and phytotoxicity of new ionic liquids incorporating chiral cations and/or chiral anions. J Agric Food Chem 55:1881–1892. doi:10.1021/jf062849q

    Article  Google Scholar 

  • Barrado E, Couto RAS, Quinaz MB, Lima JLFC, Castrillejo Y (2014) Electrochemical behaviour of ferrocene in the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate, EMIMBF4, at 298K. J Electroanal Chem 720–721:139–146. doi:10.1016/j.jelechem.2014.03.026

    Article  Google Scholar 

  • Biczak R, Bachowska B, Bałczewski P (2010) Study of phytotoxicity of ionic liquid 1-(methylthiomethylene)-3-butylimidazolium chloride. Proc ECOpole 4:105–114 (in Pol.)

    CAS  Google Scholar 

  • Biczak R, Bałczewski P, Bachowska B, Pawłowska B, Kazmierczak-Baranska J, Cieslak M, Nawrot B (2013a) Phytotoxicity and cytotoxicity of imidazolium ionic liquids containing sulfur atom. Phosphorus Sulfur Silicon Relat Elem 188:459–561. doi:10.1080/10426507.2012.737880

    Article  CAS  Google Scholar 

  • Biczak R, Pawłowska B, Bałczewski P, Bachowska B, Herman B (2013b) Phytotoxicity of ionic liquids containing phosphorus atom. Ecol Chem Eng A 20:621–630. doi:10.2428/ecea-2013.20(06)057

    CAS  Google Scholar 

  • Biczak R, Bałczewski P, Pawłowska B, Bachowska B, Rychter P (2014a) Comparison of phytotoxicity of selected phosphonium ionic liquid. Ecol Chem Eng S 21:281–295. doi:10.2478/eces-2014-0022

    CAS  Google Scholar 

  • Biczak R, Pawłowska B, Bałczewski P, Rychter P (2014b) The role of the anion in the toxicity of imidazolium ionic liquids. J Hazard Mater 274:181–190. doi:10.1016/j.hazmat.2014.03.021

    Article  CAS  Google Scholar 

  • Bruzzone S, Chiappe C, Focardi SE, Pretti C, Renzi M (2011) Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure—toxicity relationships. Chem Eng J 175:17–23. doi:10.1016/j.cej.2011.08.073

    Article  CAS  Google Scholar 

  • Bubalo MC, Hanousek K, Radošević K, Srček VG, Jakovlević T, Redovniković IR (2014a) Imidazolium based ionic liquids: effect of different anions and alkyl chains lengths on the barley seedlings. Ecotoxicol Environ Saf 101:116–123. doi:10.1016/j.ecoenv.2013.12.022

    Article  Google Scholar 

  • Bubalo MC, Radošević K, Redovniković IR, Halambek J, Srček VG (2014b) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12. doi:10.1016/j.ecoenv.2013.10.019

    Article  Google Scholar 

  • Cevasco G, Chiappe C (2014) Are ionic liquids a proper solution to current environmental challenges? 16:2375–2385. doi:10.1039/c3gc42096e

  • Chatel G, Pereira JFB, Debbeti V, Wahg H, Rogers RD (2014) Mixing ionic liquids—“simple mixtures” or “double salts”? Green Chem 16:2051–2083. doi:10.1039/c3gc41389f

    Article  CAS  Google Scholar 

  • Cho C-W, Pham TPT, Jeon Y-V, Vijayaraghavan K, Choe W-S, Yun Y-S (2007) Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere 69:1003–1007. doi:10.1016/j.chemosphere.2007.06.023

    Article  CAS  Google Scholar 

  • Cho C-W, Pham TPT, Jeon Y-C, Yun Y-S (2008) Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum. Green Chem 10:67–72. doi:10.1039/b705520j

    Article  CAS  Google Scholar 

  • Cojocaru OA, Shamshina JL, Gurau G, Syguda A, Praczyk T, Pernak J, Rogers RD (2013) Ionic liquid forms of the herbicide dicamba with increased efficacy and reduced volatility. Green Chem 15:2110–2120. doi:10.1039/c3gc37143c

    Article  CAS  Google Scholar 

  • Das RN, Roy K (2014) Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus. Chemosphere 104:170–176. doi:10.1016/j.chemosphere.2013.11.002

    Article  CAS  Google Scholar 

  • Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189. doi:10.1039/b419172b

    Article  CAS  Google Scholar 

  • Feder-Kubis J (2013) Physical properties of chiral ionic liquids based on (–)-menthol. Phosphorus Sulfur Silicon Relat Elem 188:515–520. doi:10.1080/10426507.2012.738738

    Article  CAS  Google Scholar 

  • Feder-Kubis J, Bryjak J (2013) Laccase activity and stability in the presence of menthol-based ionic liquids. Acta Biochim Pol 60:741–75. doi: no applicable. www.actabp.pl/pdf/4_2013/741.pdf.

  • Feder-Kubis J, Tomczuk K (2013) The effect of the cationic structures of chiral ionic liquids on the their antimicrobial activities. Tetrahedron 69:4190–4198. doi:10.1016/j.tet.2013.03.107

    Article  CAS  Google Scholar 

  • Feder-Kubis J, Kubicki M, Pernak J (2010) 3-Alkoxymethyl-1-(1R,2S,5R)-(–)-mentoxymethyl-imidazolium salts-based chiral ionic liquids. Tetrahedron Asymmetr 21:2709–2718. doi:10.1016/j.tetasy.2010.10.029

    Article  CAS  Google Scholar 

  • Ghavre M, Byrne O, Altes L, Surolia PK, Spulak M, Qulity B, Thampi KR, Gathergood N (2014) Low toxicity functionalised imidazolium salts for task specific ionic liquid electrolytes in dye-sensitised solar cells: a step towards less hazardous energy production. Green Chem 16:2252–2265. doi:10.1039/c3gc42393j

    Article  CAS  Google Scholar 

  • Gouveia W, Jorge TF, Martins S, Meireles M, Carolino M, Cruz C, Almeida TV, Araújo MEM (2014) Toxicity of ionic liquids prepared from biomaterials. Chemosphere 104:51–56. doi:10.1016/j.chemosphere.2014.10.055

    Article  CAS  Google Scholar 

  • Hinckley G, Mozhaev VV, Budde C, Khmelnitsky YL (2002) Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnol Lett 24:2083–2087

    Article  CAS  Google Scholar 

  • Jacquemin J, Feder-Kubis J, Zorębski M, Grzybowska K, Chorążewski M, Hensel-Bielówka S, Zorębski E, Paluch M, Dzida M (2014) Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities. Phys Chem Chem Phys 16:3549–3557. doi:10.1039/c3cp54533d

    Article  CAS  Google Scholar 

  • Keskin S, Kayrak-Talay D, Akman U, Hortaçsu Ö (2007) A review of ionic liquids towards supercritical fluid application. J Supercrit Fluids 43:150–180. doi:10.1016/j.supflu.2007.05.013

    Article  CAS  Google Scholar 

  • Kordala-Markiewicz R, Rodak H, Markiewicz B, Walkiewicz F, Sznajdrowska A, Materna K, Marcinkowska K, Praczyk T, Pernak J (2014) Phenoxy herbicidal ammonium ionic liquids. Tetrahedron 70:4784–4789. doi:10.1016/j.tet.2014.05.041

    Article  CAS  Google Scholar 

  • Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem 10:104–110. doi:10.1039/b709289j

    Article  CAS  Google Scholar 

  • Liu H, Zhang S, Hu X, Chen C (2013) Phytotoxicity and oxidative stress effect of 1-octyl-3-methylimidazolium chloride ionic liquid on rice seedlings. Environ Pollut 181:242–249. doi:10.1016/j.envpol.2013.06.007

    Article  CAS  Google Scholar 

  • Liu T, Zhu L, Xie H, Wang J, Wang J, Sun F, Wang F (2014) Effects of the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate on the growth of wheat seedlings. Environ Sci Pollut Res 21:3936–3945. doi:10.1007/s11356-013-2348-8

    Article  CAS  Google Scholar 

  • Ma J-M, Cai L-L, Zhang B-J, Hu L-W, Li X-Y, Wang J-J (2010) Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol Environ Saf 73:1465–1469. doi:10.1016/j.ecoenv.2009.10.004

    Article  CAS  Google Scholar 

  • Matusiak A, Lewkowski J, Rychter P, Biczak R (2013) Phytotoxicity of new furan-derived aminophosphonic acids, N-aryl furaldimines and 5-nitrofuraldimine. J Agric Food Chem 61:7673–7678. doi:10.1021/jf402401z

    Article  CAS  Google Scholar 

  • Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jastorff B (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9:1198–1207. doi:10.1039/b705795d

    Article  CAS  Google Scholar 

  • Matzke M, Stolte S, Arning J, Uebers U, Filser J (2008a) Imidazolium based ionic liquids in soil: effects of the side chain length on wheat (Triticum aestivum) and cress (Lepidium sativum) as affected by different clays and organic matter. Green Chem 10:584–591. doi:10.1039/b717811e

    Article  CAS  Google Scholar 

  • Matzke M, Stolte S, Böschen A, Filser J (2008b) Mixture effects and predictability of combination effects of imidazolium based ionic liquids as well as imidazolium based ionic liquids and cadmium on terrestrial plants (Triticum aestivum) and limnic green algae (Scenedesmus vacuolatus). Green Chem 10:784–792. doi:10.1039/b802350f

    Article  CAS  Google Scholar 

  • Matzke M, Stolte S, Arning J, Uebers U, Filser J (2009) Ionic liquids in soil: effects of different anion species of imidazolium based ionic liquids on wheat (Triticum aestivum) as affected by different clay minerals and clay concentrations. Ecotoxicology 18:197–203. doi:10.1007/s10646-008-0272-3

    Article  CAS  Google Scholar 

  • Messali M, Moussa Z, Alzahrani AY, El-Naggar MY, ElDouhaibi AS, Judeh ZMA, Hammouti B (2013) Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids. Chemosphere 91:1627–1634. doi:10.1016/j.chemosphere.2012.12.062

    Article  CAS  Google Scholar 

  • Miao X, Feder-Kubis J, Fischmeister C, Pernak J, Dixneuf P (2008) Catalytic cycloisomerisation of 1,6-dienes in ionic liquids. Tetrahedron 64:3687–3690. doi:10.1007/s10870-008-9495-7

    Article  CAS  Google Scholar 

  • Mrozik W, Jungnickel C, Paszkiewicz M, Stepnowski P (2013) Interaction of novel ionic liquids with soil. Water Air Soil Pollut 224:1759–1765. doi:10.1007/s11270-013-1759-y

    Article  Google Scholar 

  • OECD/OCDE 208 (2006) Guidelines for the testing of chemicals. Terrestrial plant test: seedling emergence and seedling growth test

  • Pawłowska B, Biczak R, Bałczewski P (2013) Phytotoxicity of 2,2′-thiodiacetic acid relative to selected higher plants. Inżynieria i Ochrona Środowiska 16:487–498 (in Pol.)

    Google Scholar 

  • Peric B, Sierra J, Martí E, Cruañas R, Garau MA, Arning J, Bottin-Weber U, Stolte S (2013) (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater 261:99–105. doi:10.1016/j.hazmat.2013.06.070

    Article  CAS  Google Scholar 

  • Pernak J, Feder-Kubis J (2005) Synthesis and properties of chiral ammonium-based ionic liquids. Chem Eur J 11:4441–4449. doi:10.1002/chem.200500026

    Article  CAS  Google Scholar 

  • Pernak J, Feder-Kubis J (2006) Chiral pyridinium-based ionic liquids containing the (1R,2S,5R)-(–)-menthyl group. Tetrahedron Asymmetr 17:1728–1737. doi:10.1016/j.tetasy.2006.06.014

    Article  CAS  Google Scholar 

  • Pernak J, Goc I, Mirska I (2004) Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem 6:323–329

    Article  CAS  Google Scholar 

  • Pernak J, Feder-Kubis J, Cieniecka-Rosłonkiewicz A, Fischmeister C, Grifin ST, Rogers RD (2007) Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R)-(–)-menthoxymethyl substituent. New J Chem 31:879–892. doi:10.1039/B616215K

    Article  CAS  Google Scholar 

  • Pernak J, Syguda A, Janiszewska D, Materna K, Praczyk T (2011) Ionic liquids with herbicidal anions. Tetrahedron 67:4838–4844. doi:10.1016/j.tet.2011.05.016

    Article  CAS  Google Scholar 

  • Pernak J, Syguda A, Materna K, Janus E, Kardasz P, Praczyk T (2012) 2,4-D based herbicidal ionic liquids. Tetrahedron 68:4267–4273. doi:10.1016/j.tet.2012.03.065

    Article  CAS  Google Scholar 

  • Pernak J, Niemczak M, Materna K, Marcinkowska K, Praczyk T (2013a) Ionic liquids as herbicides and plant regulators. Tetrahedron 69:4665–4669. doi:10.1016/j.tet.2013.03.097

    Article  CAS  Google Scholar 

  • Pernak J, Niemczak M, Zakrocka K, Praczyk T (2013b) Herbicidal ionic liquid with dual-function. Tetrahedron 69:8132–8136. doi:10.1016/j.tet.2013.07.053

    Article  CAS  Google Scholar 

  • Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372. doi:10.1016/j.watres.2009.09.030

    Article  CAS  Google Scholar 

  • Pinto PCAG, Saraiva MLMFS, Lima JLFC (2008) Sequential injection analysis as a tool for implementation of enzymatic assays in ionic liquids. Talanta 77:479–483. doi:10.1016/j.talanta.2008.03.017

    Article  CAS  Google Scholar 

  • Polit JT, Praczyk T, Pernak J, Sobiech Ł, Jakubiak E, Skrzypczak G (2014) Inhibition of germination and early growth of rape seed (Brassica napus L.) by MCPA in anionic and ester form. Acta Physiol Plant 36:699–711. doi:10.1007/s11738-013-1448-x

    Article  CAS  Google Scholar 

  • Stepnowski P, Mrozik W, Nichthauser J (2007) Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soil. Environ Sci Technol 41:511–516. doi:10.1021/es062014w

    Article  CAS  Google Scholar 

  • Studzińska S, Buszewski B (2009) Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.). Alan Bioanal Chem 393:983–990. doi:10.1007/s00216-008-2523-9

    Article  Google Scholar 

  • Studzińska S, Kowalkowski T, Buszewski B (2009) Study of ionic liquid cation transport in soil. J Hazard Mater 186:1542–1547. doi:10.1016/j.hazmat.2009.03.029

    Article  Google Scholar 

  • Sunitha S, Kanjilal S, Reddy PS, Prasad RBN (2007) Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnol Lett 29:1881–1885. doi:10.1007/s10529-007-9471-x

    Article  CAS  Google Scholar 

  • Taha M, e Silva FA, Quental MV, Ventura SPM, Freire MG, Coutinho JAP (2014) Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chem 16:3149–3159. doi:10.1039/c4gc00328d

    Article  CAS  Google Scholar 

  • Ventura SPM, Marques CS, Rosatella AA, Afonso CAM, Gonçalves F, Coutinho JAP (2012) Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 76:162–168. doi:10.1016/j.ecoenv.2011.10.006

    Article  CAS  Google Scholar 

  • Ventura SPM, Gonçalves AMM, Sintra T, Pereira JL, Gonçalves F, Coutinho JAP (2013) Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology 22:1–12. doi:10.1007/s10646-012-0997-x

    Article  CAS  Google Scholar 

  • Viboud S, Papaiconomou N, Cortesi A, Chatel G, Draye M, Fontvieille D (2012) Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: a systematic study. J Hazard Mater 215–216:40–48. doi:10.1016/j.hazmat.2012.02.019

    Article  Google Scholar 

  • Wang L-S, Wang L, Wang L, Wang G, Li Z-H, Wang J-J (2009) Effects of 1-butyl-3-methylimidazolium tetrafluoroborate on the what (Triticum aestivum L.) seedlings. Environ Toxicol 24:296–303. doi:10.1002/tox.20435

    Article  CAS  Google Scholar 

  • Zhang C, Wang H, Malhotra SV, Dodge CJ, Francis AJ (2010) Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chem 12:851–858. doi:10.1039/b924264c

    Article  CAS  Google Scholar 

  • Zhang C, Malhorta SV, Francis AJ (2014) Toxicity of ionic liquids to Clostridium sp. and effects on uranium biosorption. J Hazard Mater 264:246–253. doi:10.1016/j.hazmat.2013.11.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wrocław University of Technology.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Biczak.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

SupplFig. 1

Digital photographs of spring barley on the 14th day after introduction to the soil [C1-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 94 kb)

SupplFig. 2

Digital photographs of spring barley on the 14th day after introduction to the soil [C6-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 128 kb)

SupplFig. 3

Digital photographs of spring barley on the 14th day after introduction to the soil [C8-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 128 kb)

SupplFig. 4

Digital photographs of spring barley on the 14th day after introduction to the soil [C9-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 130 kb)

SupplFig. 5

Digital photographs of spring barley on the 14th day after introduction to the soil [C10-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 129 kb)

SupplFig. 6

Digital photographs of spring barley on the 14th day after introduction to the soil [C11-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 132 kb)

SupplFig. 7

Digital photographs of common radish on the 14th day after introduction to the soil [C3-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 109 kb)

SupplFig. 8

Digital photographs of common radish on the 14th day after introduction to the soil [C6-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 115 kb)

SupplFig. 9

Digital photographs of common radish on the 14th day after introduction to the soil [C8-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 114 kb)

SupplFig. 10

Digital photographs of common radish on the 14th day after introduction to the soil [C9-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 117 kb)

SupplFig. 11

Digital photographs of common radish on the 14th day after introduction to the soil [C10-Im-Men][BF4] (in mg/kg soil d.w.). (PDF 115 kb)

SupplFig. 12

Reaction of plants on spraying with 0.5%, 1.0% and 2.0% [C1-Im-Men][BF4]. (PDF 290 kb)

SupplFig. 13

Reaction of plants on spraying with 0.5%, 1.0% and 2.0% [C6-Im-Men][BF4]. (PDF 322 kb)

SupplFig. 14

Reaction of plants on spraying with 0.5%, 1.0% and 2.0% [C10-Im-Men][BF4]. (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biczak, R., Pawłowska, B. & Feder-Kubis, J. The phytotoxicity of ionic liquids from natural pool of (−)-menthol with tetrafluoroborate anion. Environ Sci Pollut Res 22, 11740–11754 (2015). https://doi.org/10.1007/s11356-015-4327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4327-8

Keywords

Navigation