Skip to main content

Advertisement

Log in

Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin–dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  • Acuña S, Baxa D, Teh S (2012) Sublethal dietary effects of microcystin producing Microcystis on threadfin shad, Dorosoma petenense. Toxicon 60(6):1191–1202

    Article  Google Scholar 

  • AWWARF (1987) Current methodlogy for the control of algae in surface waters. Research report. AWWA, Denvor

    Google Scholar 

  • Bautista J, Jover M, Gutierrez JF, Corpas R, Cremades O, Fontiveros E, Iglesias F, Vega J (2001) Preparation of crayfish chitin by in situ lactic acid production. Process Biochem 37(3):229–234

    Article  CAS  Google Scholar 

  • Chen X-C, Kong H-N, He S-B, Wu D-Y, Li C-J, Huang X-C (2009a) Reducing harmful algae in raw water by light-shading. Process Biochem 44(3):357–360

    Article  CAS  Google Scholar 

  • Chen X, He S, Huang Y, Kong H, Lin Y, Li C, Zeng G (2009b) Laboratory investigation of reducing two algae from eutrophic water treated with light-shading plus aeration. Chemosphere 76(9):1303–1307

    Article  CAS  Google Scholar 

  • Chen J, Zhang H, Han Z, Ye J, Liu Z (2012) The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecol Eng 42:130–133

    Article  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Spon Press, London

    Book  Google Scholar 

  • Dai GF, Quan CY, Zhang XZ, Liu J, Song LR, Gan NQ (2012) Fast removal of cyanobacterial toxin microcystin-LR by a low-cytotoxic microgel-Fe(III) complex. Water Res 46(5):1482–1489

    Article  CAS  Google Scholar 

  • Edzwald JK, Tobiason JE (1999) Enhanced coagulation: US requirements and a broader view. Water Sci Technol 40(9):63–70

    Article  CAS  Google Scholar 

  • Entry JA, Phillips I, Stratton H, Sojka RE (2003) Polyacrylamide+Al2(SO4)3 and polyacrylamide+CaO remove coliform bacteria and nutrients from swine wastewater. Environ Pollut 121(3):453–462

    Article  CAS  Google Scholar 

  • Fuentes M, Olaetxea M, Baigorri R, Zamarreño AM, Etienne P, Laîné P, Ourry A, Yvin J-C, Garcia-Mina JM (2013) Main binding sites involved in Fe(III) and Cu(II) complexation in humic-based structures. J Geochem Explor 129:14–17

    Article  CAS  Google Scholar 

  • Gan N, Xiao Y, Zhu L, Wu Z, Liu J, Hu C, Song L (2012) The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ Microbiol 14(3):730–742

    Article  CAS  Google Scholar 

  • Hadjoudja S, Deluchat V, Baudu M (2011) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interface Sci 342(2):293–299

    Article  Google Scholar 

  • Hao B, Wu H, Shi Q, Liu G, Xing W (2013) Facilitation and competition among foundation species of submerged macrophytes threatened by severe eutrophication and implications for restoration. Ecol Eng 60:76–80

    Article  Google Scholar 

  • Hu CL, Gan NQ, He ZK, Song LR (2008) A novel chemiluminescent immunoassay for microcystin (MC) detection based on gold nanoparticles label and its application to MC analysis in aquatic environmental samples. Int J Environ Anal Chem 88(4):267–277

    Article  CAS  Google Scholar 

  • Greger M, Johansson M (2004) Aggregation effects due to aluminum adsorption to cell walls of the unicellular green alga Scenedesmus obtusiusculus. Phycol Res 52(1):53–58

  • Joo DJ, Shin WS, Kim Y-H, Kim JH, Choi JH, Choi SJ, Park L-S (2003) Effect of polyamine flocculant types on dye wastewater treatment. Sep Sci Technol 38(3):661–678

    Article  CAS  Google Scholar 

  • Lawton LA, Robertson PKJ, Cornish B, Marr IL, Jaspars M (2003) Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J Catal 213(1):109–113

    Article  CAS  Google Scholar 

  • Li L, Pan G (2013) A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environ Sci Technol 47(9):4555–4562

    Article  CAS  Google Scholar 

  • Li Q, Su Y, Yue Q-Y, Gao B-Y (2011) Adsorption of acid dyes onto bentonite modified with polycations: kinetics study and process design to minimize the contact time. Appl Clay Sci 53(4):760–765

    Article  CAS  Google Scholar 

  • Liu YM, Chen W, Li DH, Huang ZB, Shen YW, Liu YD (2011) Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China. J Environ Sci China 23(4):575–581

    Article  CAS  Google Scholar 

  • Maske SS, Sangolkar LN, Chakrabarti T (2010) Temporal variation in density and diversity of cyanobacteria and cyanotoxins in lakes at Nagpur (Maharashtra State), India. Environ Monit Assess 169(1–4):299–308

    Article  CAS  Google Scholar 

  • McKnight D, Chisholm S, Harleman DF (1983) CuSO4 treatment of nuisance algal blooms in drinking water reservoirs. Environ Manag 7(4):311–320

    Article  CAS  Google Scholar 

  • Pan G, Zou H, Chen H, Yuan XZ (2006) Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environ Pollut 141(2):206–212

    Article  CAS  Google Scholar 

  • Pan G, Dai L, Li L, He L, Li H, Bi L, Gulati RD (2012) Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes. Environ Sci Technol 46(9):5077–5084

    Article  CAS  Google Scholar 

  • Ross C, Santiago-Vázquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78(1):66–73

    Article  CAS  Google Scholar 

  • Sathishkumar M, Pavagadhi S, Vijayaraghavan K, Balasubramanian R, Ong SL (2010) Experimental studies on removal of microcystin-LR by peat. J Hazard Mater 184(1–3):417–424

    Article  CAS  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Fillat MF, Peleato ML (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol 10(10):2476–2483

    Article  CAS  Google Scholar 

  • Shang HZ, Zheng YB (2009) Composition of P(AM-DMC-MPMS)/PFS and its application in decolorization. Mod Chem Ind (in chinese) 29(10):47–50

    CAS  Google Scholar 

  • Sim TS, Goh A, Becker EW (1988) Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae. Biomass 16(1):51–62

    Article  Google Scholar 

  • Singh S, Pradhan S, Rai LC (1998) Comparative assessment of Fe3+ and Cu2+ biosorption by field and laboratory-grown Microcystis. Process Biochem 33(5):495–504

    Article  CAS  Google Scholar 

  • Wang DS, Liu HL, Yan MQ, Yu, JF, Tang HX (2006) Enhanced coagulation VS.optimized coagulation: a critical review. Acta Scientiae Circumstantiae(in chinese) 26(4):544–551

  • Wu X, Kong F, Chen Y, Qian X, Zhang L, Yu Y, Zhang M, Xing P (2010) Horizontal distribution and transport processes of bloom-forming Microcystis in a large shallow lake (Taihu, China). Limnologica Ecol Manag Inland Waters 40(1):8–15

    Article  CAS  Google Scholar 

  • Xu Q, Chen W, Gao G (2008) Seasonal variations in microcystin concentrations in Lake Taihu, China. Environ Monit Assess 145(1–3):75–79

    Article  CAS  Google Scholar 

  • Xu H, Zhu G, Qin B, Paerl HW (2013) Growth response of Microcystis spp. to iron enrichment in different regions of Lake Taihu, China. Hydrobiologia 700(1):187–202

    Article  CAS  Google Scholar 

  • Xue H-B, Stumm W, Sigg L (1988) The binding of heavy metals to algal surfaces. Water Res 22(7):917–926

    Article  CAS  Google Scholar 

  • Zhang K, Lin TF, Zhang T, Li C, Gao N (2013) Characterization of typical taste and odor compounds formed by Microcystis aeruginosa. J Environ Sci 25(8):1539–1548

    Article  CAS  Google Scholar 

  • Zou H, Pan G, Chen H, Yuan XZ (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environ Pollut 141(2):201–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31400405), the National Postdoctoral Foundation of China (Grant No. 2014 M561875), and the Water Science and Technology Fund (Grant No. KT201307). We thank Dr. Zhang Xianzheng and Dr. Zhang Xiaojin for their kind help in the characterization of the materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiayou Zhong or Lirong Song.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, G., Zhong, J., Song, L. et al. Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils. Environ Sci Pollut Res 22, 10636–10646 (2015). https://doi.org/10.1007/s11356-015-4274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4274-4

Keywords

Navigation