Skip to main content
Log in

Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Unplasticized polyvinyl chloride (uPVC) pipes have been used in the premise plumbing system due to their high strength, long-term durability, and low cost. uPVC pipes, however, may contain lead due to the use of lead compounds as the stabilizer during the manufacturing process. The release of lead from three locally purchased uPVC pipes was investigated in this study. The effects of various water quality parameters including pH value, temperature, and type of disinfectant on the rate of lead release were examined. The elemental mapping obtained using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) confirmed the presence of lead on the inner surfaces of the uPVC pipes and their surface lead weight percentages were determined. The leachable lead concentration for each pipe was determined using high strength acidic EDTA solutions (pH 4, EDTA = 100 mg/L). Lead leaching experiments using tap water and reconstituted tape water under static conditions showed that the rate of lead release increased with the decreasing pH value and increasing temperature. In the presence of monochloramine, lead release was faster than that in the presence of free chlorine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Malack MH (2001) Migration of lead from unplasticized polyvinyl chloride pipes. J Hazard Mater 82:263–274

    Article  CAS  Google Scholar 

  • Bellinger D, Sloman J, Leviton A, Rabinowitz M, Needleman HL, Waternaux C (1991) Low level lead exposure and children’s cognitive function in the preschool years. Pediatrics 87:219–227

    CAS  Google Scholar 

  • Canfield RL, Kreher DA, Cornwell C, Henderson CR (2003) Low level lead exposure, executive functioning, and learning in early childhood. Child Neuropsychol 9:35–53

    Article  Google Scholar 

  • Edwards M (2014) Fetal death and reduced birth rates associated with exposure to lead contaminated drinking water. Environ Sci Technol 48:739–746

    Article  CAS  Google Scholar 

  • Edwards M, Dudi A (2004) Role of chlorine and chloramine in corrosion of lead-bearing plumbing materials. J Am Water Works Assoc 96:69–81

    CAS  Google Scholar 

  • Edwards M, Triantafyllidou S, Best D (2009) Elevated blood lead in young children due to lead contaminated drinking water: Washington, DC, 2001–2004. Environ Sci Technol 43:1618–1623

    Article  CAS  Google Scholar 

  • Guidotti TL, Calhoun T, Davies-Cole JO, Knuckles ME, Stokes L, Glymph C, Lum G, Moses MS, Goldsmith DF, Ragain L (2007) Elevated lead in drinking water in Washington, DC, 2003–2004: the public health response. Environ Health Perspect 115:695–701

    Article  CAS  Google Scholar 

  • Jafvert CT, Valentine RL (1992) Reaction scheme for the chlorination of ammoniacal water. Environ Sci Technol 26:577–586

    Article  CAS  Google Scholar 

  • Koh LL, Wong MK, Gan LM, Yap CT (1991) Factors affecting the leaching of lead from UPVC pipes. Environ Monitor Assess 19:203–213

    Article  CAS  Google Scholar 

  • Lasheen MR, Sharaby CM, El-Kholy NG, Elsherif IY, Ei-Wakeel ST (2008) Factors influencing lead and iron release from some Egyptian drinking water pipes. J Hazard Mater 160:675–680

    Article  CAS  Google Scholar 

  • Lin YP, Valentine RL (2008) Release of Pb(II) from monochloramine mediated dissolution of lead oxide (PbO2). Environ Sci Technol 42:9137–9143

    Article  CAS  Google Scholar 

  • Lin YP, Valentine RL (2009) Reduction of lead oxide (PbO2) and release of Pb(II) in mixtures of natural organic matter, free chlorine and monochloramine. Environ Sci Technol 43:3872–3877

    Article  CAS  Google Scholar 

  • Liu HZ, Korshin GV, Ferguson JF (2008) Investigation of the kinetics and mechanisms of the oxidation of cerussite and hydrocerussite by chlorine. Environ Sci Technol 42:3241–3247

    Article  CAS  Google Scholar 

  • Liu HZ, Korshin GV, Ferguson JF (2009) Interactions of Pb(II)/Pb(IV) solid phases with chlorine and their effects on lead release. Environ Sci Technol 43:3278–3284

    Article  CAS  Google Scholar 

  • Lytle DA, Schock MR (2005) Formation of Pb(IV) oxides in chlorinated water. J Am Water Works Assoc 97:102–114

    CAS  Google Scholar 

  • Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM (2005) Lead toxicity update. A brief review. Med Sci Monit 11:RA329–RA336

    CAS  Google Scholar 

  • Renner R (2004) Plumbing the depths of D.C’.s drinking water crisis. Environ Sci Technol 38:224A–227A

    Article  CAS  Google Scholar 

  • Renner R (2009) Out of plumb when water treatment causes lead contamination. Environ Health Perspect 117:A542–A547

    Article  Google Scholar 

  • Renner R (2010) Exposure on tap drinking water as an overlooked source of lead. Environ Health Perspect 118:A68–A74

    Article  Google Scholar 

  • Sadiq M, Zaidi TH, AlMuhanna H, Mian AA (1997) Effect of distribution network pipe material on drinking water quality. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng 32:445–454

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, 3 ed. Wiley Interscience

  • Sue K, Hakuta Y, Smith RL, Adschiri T, Arai K (1999) Solubility of lead(II) oxide and copper(II) oxide in subcritical and supercritical water. J Chem Eng Data 44:1422–1426

    Article  CAS  Google Scholar 

  • USEPA (1991) Maximum contaminant level goals and national primary drinking water regulations for lead and copper. Fed Regist 56:26460–26564

    Google Scholar 

  • Wallenwein G (2006) PVC stabilizers: a contribution to sustainability. Plastics Plast Addit Compound 8:26–28

    Article  CAS  Google Scholar 

  • Wang Y, Xie YJ, Li WL, Wang ZM, Giammar DE (2010) Formation of lead(IV) oxides from lead(II) compounds. Environ Sci Technol 44:8950–8956

    Article  CAS  Google Scholar 

  • Whelan A, Craft JL (1977) Developments in PVC production and processing-1. Applied Science Publishers, London

    Google Scholar 

  • WHO (2011) Water sanitation and health: guidelines for drinking water quality

  • Wong MK, Gan LM, Koh LL (1988) Temperature effects on the leaching of lead from unplasticized poly(vinyl-chloride) pipes. Water Res 22:1399–1403

    Article  CAS  Google Scholar 

  • Wong MK, Gan LM, Koh LL, Lum OL (1990) Some further studies on factors affecting the leaching of lead from unplasticized poly(vinyl chloride) pipes. Water Res 24:451–455

    Article  CAS  Google Scholar 

  • Zhang Y, Lin YP (2011) Determination of PbO2 formation kinetics from the chlorination of Pb(II) carbonate solids via direct PbO2 measurement. Environ Sci Technol 45:2338–2344

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang YY, Lin YP (2010) Fast detection of lead dioxide (PbO2) in chlorinated drinking water by a two-staged iodometric method. Environ Sci Technol 44:1347–1352

    Article  CAS  Google Scholar 

  • Ziemniak SE, Palmer DA, Benezeth P, Anovitz LM (2005) Solubility of litharge (alpha-PbO) in alkaline media at elevated temperatures. J Solut Chem 34:1407–1428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank financial support from National University of Singapore (R-302-000-049-112) and National Taiwan University (NTU-CDP-103R7877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Pin Lin.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lin, YP. Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water. Environ Sci Pollut Res 22, 8405–8411 (2015). https://doi.org/10.1007/s11356-014-3999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3999-9

Keywords

Navigation