Skip to main content

Advertisement

Log in

Comparison of essential and toxic elements in esophagus, lung, mouth and urinary bladder male cancer patients with related to controls

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

There is a compelling evidence in support of negative associations between essential trace and toxic elements in different types of cancer. The aim of the present study was to investigate the relationship between carcinogenic (As, Cd, Ni) and anti-carcinogenic (Se, Zn) trace elements in scalp hair samples of different male cancerous patients (esophagus, lung, mouth, and urinary bladder). For comparative purposes, the scalp hair samples of healthy males of the same age group (ranged 35–65 years) as controls were analyzed. Both controls and patients have the same socioeconomic status, localities, dietary habits, and smoking locally made cigarette. The scalp hair samples were oxidized by 65 % nitric acid: 30 % hydrogen peroxide (2:1) ratio in microwave oven followed by atomic absorption spectrometry. The validity and accuracy of the methodology were checked using certified reference material of human hair BCR 397. The mean concentrations of As, Cd, and Ni were found to be significantly higher in scalp hair samples of patients having different cancers as compared to the controls, while reverse results were obtained in the case of Se and Zn levels (p < 0.01). The study revealed that the carcinogenic processes are significantly affecting the trace elements burden and mutual interaction of essential trace and toxic elements in the cancerous patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • (2005) Monograph on the pattern of malignant tumor an analysis of ten years data from tumor registry 1992–2001, A publication of Armed Forces Institute of Pathology Rawalpindi. Pakistan

  • Afridi HI, Kazi TG, Kazi GH et al (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spect Lett 39:203–214

    CAS  Google Scholar 

  • Afridi HI, Kazi TG, Kazi N et al (2009) Evaluation of arsenic, cobalt, copper and manganese in biological samples of steel mill workers by electrothermal atomic absorption spectrometry. Tox Ind Health 25:59–69

    CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Toxicological profile for cadmium. United States Department of Health and Human Services Agency for Toxic Substances and Disease Registry, Atlanta, GA, Report No.: 7440-43-9.

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2003a) Toxicological profile for nickel. United States Department of Health and Human Services Agency for Toxic Substances and Disease Registry, Atlanta, GA, Report No.: 7440-02-0.

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2003b) Toxicological profile for arsenic. United States Department of Health and Human Services Agency for Toxic Substances and Disease Registry, Atlanta, GA, Report No.: 7440-38-2

  • Agency for Toxic Substances, Disease Registry (ATSDR) (2003c) Toxicological profile for zinc. United States Department of Health and Human Services Agency for Toxic Substances and Disease Registry, Atlanta, GA, Report No.:7440-66-6

  • Ahmed M, Khan AH, and Manzoor A, et. Al (1991) Armed Forces Institute of Pathology, Rawalpindi, JPMA

  • Alatise OI, Schrauzer GN (2010) Lead exposure: a contributing cause of the current breast cancer epidemic in Nigerian women. Biol Trace Elem Res 136(2):127–139

    CAS  Google Scholar 

  • Arain MB, Kazi TG, Baig JA, Jamali MK, Afridi HI, Jalbani N, Sarfraz RA, Shah AQ, Kandhro GA (2009) Respiratory effects in people exposed to arsenic via the drinking water and tobacco smoking in southern part of Pakistan. Sci Total Environ 407:5524–5530

    CAS  Google Scholar 

  • Arian MB, Kazi TG, Jamali MK, Jalbani N, Afridi HI, Ansari R, Abbas G (2008) Hazardous impact of toxic metals on tobacco leaves grown in contaminated soil by ultrasonic assisted pseudo digestion; Multivariate study. J Hazard Mater 155(1-2):216–224

  • Barceloux DG (1999) Zinc. J Toxicol, Clin Toxicol 37:279–292

    CAS  Google Scholar 

  • Bates MN, Rey OA, Biggs ML et al (2008) Case–control study of bladder cancer and exposure to arsenic in Argentina. Am J Epidemiol 159:381–389

    Google Scholar 

  • Beyersmann D (2002) Effects of carcinogenic metals on gene expression. Toxicol Lett 127:63–68

    CAS  Google Scholar 

  • Blot WJ, Devesa SS, McLaughlin JK, Fraumeni JJF (1994) Oral and pharyngeal cancers. Cancer Surv 19–20:23–42

    Google Scholar 

  • Boik J (1995) Cancer and natural medicine: a textbook of basic science and clinical research. Medical Press, Oregon, p 147

    Google Scholar 

  • Chang MJ, Walker K, McDaniel RL, Connell CT (2005) Impaction collection and slurry sampling for the determination of arsenic, cadmium, and lead in side stream smoke by inductively coupled plasma-mass spectrometry. J Environ Monit 7:1349–1354

    CAS  Google Scholar 

  • Chen Y, Ahsan H (2004) Cancer burden from arsenic in drinking water in Bangladesh. Am J Public Health 94:741–744

    Google Scholar 

  • Chen CJ, Chuang YC, Lin TM et al (1985) Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res 45:5895–5899

    CAS  Google Scholar 

  • Chen CJ, Chuang YC, You SL, Lin HY (1986) A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br J Cancer 53:399–405

    CAS  Google Scholar 

  • Chen W, Martindale JL, Holbrook NJ, Liu Y (1998) Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol Cell Biol 18:5178–5188

    CAS  Google Scholar 

  • Chen YC, Su HJJ, Guo YL, Hsueh YM, Lee MS, Christiani DC et al (2003) Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 45:241–248

    CAS  Google Scholar 

  • Chiou HY, Hsueh YM, Liaw KF et al (1995) Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res 55:1296–1300

    CAS  Google Scholar 

  • Conor R (1998) Selenium: a new entrant into the functional food arena. Trends Food Sci Technol 9:114–118

    Google Scholar 

  • Costa M (1996) Mehcanisms of nickel genotoxicity and carcinogenicity. In: Chang LW (ed) Toxicology of metals. CRC, Boca Raton, pp pp 245––251

    Google Scholar 

  • da Silva JJR F, Williams RJP (2001) The biological chemistry of the elements : the inorganic chemistry of life, 2nd edn. Oxford University Press, Oxford, p p. 498

    Google Scholar 

  • DeWys W, Pories W (1972) Inhibition of a spectrum of animal tumors by dietary zinc deficiency. J Natl Cancer Inst 48:375–381

    CAS  Google Scholar 

  • Diamond WJ, Cowden WL, Goldberg B (1997) An alternative medicine definitive guide to cancer. Future Medicine Publishing, Inc., Tiburon, p 793

    Google Scholar 

  • Diez M, Arroyo M, Cerdan FJ, Munoz M, Martin MA, Balibrea JL (1989) Serum and tissue trace metal levels in lung cancer. Oncology 46:230–234

    CAS  Google Scholar 

  • Dong LH, Qiang WZ, Rong PY, Shu ZT, Zhu XX, Wang KT (1999) Comparison of serum Zn, Cu and Se contents between healthy people and patients in high, middle and low incidence areas of gastric cancer of Fujian province. World J Gastroenterol 5(1):84–86

    Google Scholar 

  • El-Bayoumy K (2001) The protective role of selenium on genetic damage and on cancer. Mut Res 475(1–2):123–139

    CAS  Google Scholar 

  • Ferreccio C, Gonzalez PC, Milosavjlevic SV, Marshall GG, Sancha AM, Smith AH (2000) Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11:673–679

    CAS  Google Scholar 

  • Franceschi S, Levi F, Vecchia CL, Conti E, Maso LD et al (1999) Comparison of the effect of smoking and alcohol drinking between oral and pharyngeal cancer. Int J Cancer 83:1–4

    CAS  Google Scholar 

  • Goering PL, Waalkes MP, Klaassen CD (1994) Book of Experimental Pharmacology. In: Goyer RA, Cherian MG (eds) Toxicology of metals, biochemical effects, vol 115. Springer, New York, pp 189–214

    Google Scholar 

  • Grandics P (2003) Cancer: a single disease with a multitude of manifestations. J Carcinog 2:1–9

    Google Scholar 

  • Gupta SK, Singh SP, Shukla VK (2005) Copper, zinc, and Cu/Zn ratio in carcinoma of the gallbladder. J Surg Oncol 91:204–208

    CAS  Google Scholar 

  • Gurusamy K, Davidson BR (2007) Trace element concentration in metastatic liver disease: a systematic review. J Trace Elem Med Biol 21:169–177

    CAS  Google Scholar 

  • Hartwig A (2000) Recent advances in metal carcinogenicity. Pure Appl Chem 72:1007–1014

    CAS  Google Scholar 

  • Hartwig A, Schwerdtle T (2002) Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol Lett 127:47–54

    CAS  Google Scholar 

  • Hartwig A, Mullenders LHF, Schlepegrell R, Kasten U, Beyersmann D (1994) Nickel (II) interferes with the incision step in nucleotide excision repair in mammalian cells. Cancer Res 54:4045–4051

    CAS  Google Scholar 

  • Hayes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385

    CAS  Google Scholar 

  • Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91(14):1194–1210

    CAS  Google Scholar 

  • Henshall SM, Afar DE, Rasiah KK, Horvath LG, Gish K, Caras I, Ramakrishnan V, Wong M, Jeffry U, Kench JG et al (2003) Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene 22:6005–6012

    CAS  Google Scholar 

  • Hopenhayn-Rich C, Biggs ML, Fuchs A et al (1996) Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology 7:117–124

    CAS  Google Scholar 

  • Hopenhayn-Rich C, Biggs ML, Smith AH (1998) Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol 27:561–569

    CAS  Google Scholar 

  • Hossain K, Akhand AA, Kato M et al (2000) Arsenite induces apoptosis of murine T lymphocytes through membrane raft-linked signaling for activation of c-Jun amino-terminal kinase. J Immunol 165:4290–4297

    CAS  Google Scholar 

  • Hu W, Feng Z, Tang MS (2004) Nickel (II) enhances benzo[a]pyrene diol epoxide-induced mutagenesis through inhibition of nucleotide excision repair in human cells: a possible mechanism for nickel (II)-induced carcinogenesis. Carcinogenesis 25:455–462

    CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (2004) Tobacco smoke and involuntary smoking, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. IARC, 83 Lyon, pp p. 1005–p. 1178

    Google Scholar 

  • International Agency for Cancer Research (1993) Monographs on the Evaluation Carcinogenic Risks Human, vol. 58

  • James MA, Michael DT, Anthony TZ, Jenny RR (2004) Pulmonary responses to welding fumes: role of metal constituents. J Toxicol Environ Health, Part A 67(3):233–249

    Google Scholar 

  • Jarup L, Bellander T, Hogstedt C, Spang G (1998) Mortality and cancer incidence in Swedish battery workers exposed to cadmium and nickel. Occup Environ Med 55:755–759

    CAS  Google Scholar 

  • Javed AA (2006) Special report: progress of oncology in Pakistan. Indian J Med Paediatr Oncol 27(3):54–59

    Google Scholar 

  • Karadag F, Cildag O, Altinisik M, Kozaci LD, Kiter G, Altun C (2004) Trace elements as a component of oxidative stress in COPD. Respirology 9:33–37

    Google Scholar 

  • Kasprzak KS (1995) Possible role of oxidative damage in metal induced carcinogenesis. Cancer Invest 13:411–430

    CAS  Google Scholar 

  • Kasprzak K, Sunderman F, Salnikow K (2003) Nickel carcinogenesis. Mutat Res 533:67–97

    CAS  Google Scholar 

  • Kazi TG, Jalbani N, Arain MB, Jamali MK, Afridi HI, Sarfraz RA, Shah AQ (2009a) Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. J Hazard Mater 163(1):302–307

    CAS  Google Scholar 

  • Kazi TG, Jamali MK, Arain MB, Afridi HI, Jalbani N, Sarfraz RA, Ansari R (2009b) Evaluation of an ultrasonic acid digestion procedure for total heavy metals determination in environmental and biological samples. J Hazard Mater 161:1391–1398

    CAS  Google Scholar 

  • Kazi TG, Wadhwa SK, Afridi HI, Kazi N, Kandhro GA, Baig JA, Shah AQ, Kolachi NF, Arain MB (2010) Interaction of cadmium and zinc in biological samples of smokers and chewing tobacco female mouth cancer patients. J Hazard Mater 176:985–991

    CAS  Google Scholar 

  • Kubova J, Hanakova V, Medved J, Stresko V (1997) Determination of lead and cadmium in human hair by atomic absorption spectrometric procedures after solid-phase extraction. Anal Chim Acta 337:329–334

    CAS  Google Scholar 

  • Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH (2002) Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res 89:1–11

    CAS  Google Scholar 

  • Lamm SH, Parkinson M, Anderson M et al (1991) Determinants of lung cancer risk among cadmium-exposed workers. AEP 2(3):195–211

    Google Scholar 

  • Lee YW, Klein CB, Kargacin B et al (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557

    CAS  Google Scholar 

  • Leonard A, Gerber GB (1994) Mutagenicity, carcinogenicity and teratogenicity of vanadium compounds. Mutat Res 317:81–88

    CAS  Google Scholar 

  • Letavayova L, Vlckova V, Brozmanova J (2006) Selenium: from cancer prevention to DNA damage. Toxicology 227:1–14

    CAS  Google Scholar 

  • Lewis DR, Southwick JW, Ouellet-Hellstrom R, Rench J, Calderon RJ (1999) Drinking water arsenic in Utah: a cohort mortality study. Environ Health Perspect 107:359–365

    CAS  Google Scholar 

  • Lu H, Shi X, Costa M, Huang C (2005) Carcinogenic effect of nickel compounds. Mol Cell Biochem 279:45–67

    CAS  Google Scholar 

  • Mackay J, Eriksen M. (2002) The tobacco atlas. Geneva: World Health Organization. ISBN 92-4-156209-9, p. 128

  • McMurray CT, Tainer JA (2003) Cancer, cadmium and genome integrity. Nat Genet 34:239–241

    CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Google Scholar 

  • Paschal DC, Burt V, Caudill SP, Gunter EW, Pirkle JL, Sampson EJ, Miller DT, Jackson RJ (2000) Exposure of the U.S. population aged 6 years and older to cadmium: 1988–1994. Arch Environ Contam Toxicol 38(3):377–383

    CAS  Google Scholar 

  • Pasha Q, Malik SA, Iqbal J, Shah MH (2007) Characterization and distribution of the selected metals in the scalp hair of cancer patients in comparison with normal donors. Biol Trace Elem Res 118:207–216

    CAS  Google Scholar 

  • Pasha Q, Malik SA, Shah MH (2008) Statistical analysis of trace metals in the plasma of cancer patients versus controls. J Hazard Mater 153:1215–1221

    CAS  Google Scholar 

  • Paski SC, Xu Z (2002) Growth factor stimulated cell proliferation is accompanied by an elevated labile intracellular pool of zinc in 3T3 cells. Can J Physiol Pharmacol 80:790–795

    CAS  Google Scholar 

  • Poo JL, Romero RR, Robles JA et al (1997) Diagnostic value of the Cu/Zn ratio in digestive cancer: a case control study. Arch Med Res 28:259–263

    CAS  Google Scholar 

  • Prasad AS (1998) Zinc in human health, an update. J Trace Elem Exp Med 11:63–87

    CAS  Google Scholar 

  • Prasad AS, Beck FW, Endre L, Handschu W, Kukuruga M, Kumar G (1996) Zinc deficiency affects cell cycle and deoxythymidine kinase gene expression in HUT-78 cells. J Lab Clin Med 128:51–60

    CAS  Google Scholar 

  • Rahman M, Vahter M, Sohel N, Yunus M, Abdul Wahed M, Streatfield PK et al (2006) Arsenic exposure and age- and sex-specific risk for skin lesions: a population-based case-referent study in Bangladesh. Environ Health Perspect 114:1847–1852

    CAS  Google Scholar 

  • Raju GJN, Sarita P, Kumar MR et al (2006) Trace elemental correlation study in malignant and normal breast tissue by PIXE technique. Nucl Inst Methods Phys Res B 247(2):361–367

    CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    CAS  Google Scholar 

  • Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542

    CAS  Google Scholar 

  • Sattar N, Scott HR, McMillan DC, Talwar D, Orielly DS, Fell GS (1997) Acute-phase reactants and plasma trace element concentrations in non-small cell lung cancer patients and controls. Nutr Cancer 288:308–312

    Google Scholar 

  • Savino W, Dardenne M, Velloso LA, Silva-Barbosa SD (2007) The thymus is a common target in malnutrition and infection. Brit J Nutr 98:11–16

    Google Scholar 

  • Schrauzer GN (2000) Anticarcinogenic effects of selenium. Cell Mol Life Sci 57:1864–1873

    CAS  Google Scholar 

  • Seilkop S, Oller A (2003) Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data. Regul Toxicol Pharmacol 37:173–190

    CAS  Google Scholar 

  • Shankar AH, Prasad AS (1998) Zinc and immune function, the biological basis of altered resistance to infection. Am J Clin Nutr 68:447–463

    Google Scholar 

  • Shirai T, Iwasaki S, Masui T, Mori T, Kato T, Ito N (1993) Jpn J Cancer Res 84:1023

    CAS  Google Scholar 

  • Siddiqui MKJ, Jyoti SS, Mehrotra PK, Singh K, Sarangi R (2006) Comparison of some trace elements concentration in blood, tumor free breast and tumor tissues of women with benign and malignant breast lesions: an Indian study. Environ Int 32:630–637

    CAS  Google Scholar 

  • Silvera SAN, Rohan TE (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18:7–27

    Google Scholar 

  • Smith AL, Mario G, Retina H et al (1998) Marked increase in bladder and lung cancer mortality in a region of north Chile due to arsenic in drinking water. Am J Epidemiol 147:660–669

    CAS  Google Scholar 

  • Smith AH, Arroyo AP, Msazumder DNG, Konsnett MJ, Hernandez AL, Beeris M et al (2000) Arsenic-induced skin lesions among Atacamen˜o people in Northern Chile despite good nutrition and centuries of exposure. Environ Health Perspect 108:617–620

    CAS  Google Scholar 

  • Sorahan T, Esmen NA (2004) Lung cancer mortality in UK nickel–cadmium battery workers, 1947–2000. Occup Environ Med 61:108–116

    CAS  Google Scholar 

  • Spallholz JE, Mallory LB, Rhaman MM (2004) Environmental hypothesis: is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India. Sci Total Environ 323:21–32

    CAS  Google Scholar 

  • Spencer JW, Jacobs JJ (1999) Complementary/alternative medicine: an evidence-based approach. Mosby, Toronto, p 136

    Google Scholar 

  • Stephanie S, Thomas R (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Cause Control 18:7–27

    Google Scholar 

  • Strain J (1994) Putative role of dietary trace element in coronary heart disease and cancer. Br J Biomed Sci 51:241

    CAS  Google Scholar 

  • Sturniolo GC, Di Leo V, Barollo M et al (2000) The many functions of zinc in inflammatory conditions of the gastrointestinal tract. J Trace Elem Exp Med 13:33–39

    CAS  Google Scholar 

  • Takeda A, Goto K, Okada S (1997) Zinc depletion suppresses tumor growth in mice. Biol Trace Elem Res 59:23–29

    CAS  Google Scholar 

  • Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    CAS  Google Scholar 

  • Tsuda T, Babazono A, Yamamoto E et al (1995) Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am J Epidemiol 141:198–209

    CAS  Google Scholar 

  • Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT et al (2004) Tobacco and cancer: recent epidemiological evidence. J Natl Cancer 96:99–106

    CAS  Google Scholar 

  • Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79:241–244

    CAS  Google Scholar 

  • Waalkes MP (2003) Cadmium carcinogenesis. Mutat Res/Fundam Mol Mech Mutagen 533(1–2):107–120

    CAS  Google Scholar 

  • Waalkes MP, Kovatch R, Rehm S (1991) Toxicol Appl Pharmacol 108:448

    CAS  Google Scholar 

  • Wadhwa SK, Kazi TG, Afridi HI, Tuzen M, Citak D (2013) Arsenic in water, food and cigarettes: a cancer risk to Pakistani population. J Envirn Sc Health Part A 48:1776–1782

    CAS  Google Scholar 

  • Wagner KA, McDaniel R, Self D (2001) Collection and preparation of side stream cigarette smoke for trace elemental determinations by graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. J AOAC Int 84(6):1934–1940

    CAS  Google Scholar 

  • WHO (1996) Trace elements in human nutrition and health. Geneva: World Health Organization

  • WHO (2002) Reducing risks, promoting healthy life. Geneva: World Health Organization

  • WHO Regional Office for Europe (2000) Air quality guidelines, 2nd edn. World Health Organization, Copenhagen

    Google Scholar 

  • Willett WC (2001) Diet and breast cancer. J Int Med 249(5):395–411, 2001

    CAS  Google Scholar 

  • Yaman M (2006) Comprehensive comparison of trace metal concentrations in cancerous and non-cancerous human tissues. Curr Med Chem 13:2513–2525

    CAS  Google Scholar 

  • Yeha C, Houb M, Tsaic S, Lind S, Hsiaod J, Huangd J et al (2005) Superoxide anion radical, lipid peroxides and antioxidant status in the blood of patients with breast cancer. Clin Chim Acta 361:104–111

    Google Scholar 

  • Zaichick V, Sviridova TV, Zaichick SV (1997) Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol 29:565–574

    Google Scholar 

  • Zowczak M, Iskra M, Paszkowski J, Maflczak M, TorLiflski L, Wysocka EJ (2001) Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients. Trace Elem Med Biol 15:193–196

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem Gul Kazi.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazi, T.G., Wadhwa, S.K., Afridi, H.I. et al. Comparison of essential and toxic elements in esophagus, lung, mouth and urinary bladder male cancer patients with related to controls. Environ Sci Pollut Res 22, 7705–7715 (2015). https://doi.org/10.1007/s11356-014-3988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3988-z

Keywords

Navigation