Skip to main content

Advertisement

Log in

Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fine particulate matter (PM2.5) is the major air pollutant in Beijing, posing serious threats to human health. Land use regression (LUR) has been widely used in predicting spatiotemporal variation of ambient air-pollutant concentrations, though restricted to the European and North American context. We aimed to estimate spatiotemporal variations of PM2.5 by building separate LUR models in Beijing. Hourly routine PM2.5 measurements were collected at 35 sites from 4th March 2013 to 5th March 2014. Seventy-seven predictor variables were generated in GIS, including street network, land cover, population density, catering services distribution, bus stop density, intersection density, and others. Eight LUR models were developed on annual, seasonal, peak/non-peak, and incremental concentration subsets. The annual mean concentration across all sites is 90.7 μg/m3 (SD = 13.7). PM2.5 shows more temporal variation than spatial variation, indicating the necessity of building different models to capture spatiotemporal trends. The adjusted R 2 of these models range between 0.43 and 0.65. Most LUR models are driven by significant predictors including major road length, vegetation, and water land use. Annual outdoor exposure in Beijing is as high as 96.5 μg/m3. This is among the first LUR studies implemented in a seriously air-polluted Chinese context, which generally produce acceptable results and reliable spatial air-pollution maps. Apart from the models for winter and incremental concentration, LUR models are driven by similar variables, suggesting that the spatial variations of PM2.5 remain steady for most of the time. Temporal variations are explained by the intercepts, and spatial variations in the measurements determine the strength of variable coefficients in our models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abernethy RC, Allen RW, McKendry IG, Brauer M (2013) A land use regression model for ultrafine particles in Vancouver, Canada. Environ Sci Technol 47:5217–5225

    Article  CAS  Google Scholar 

  • Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A (2014) Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy-LUR approaches. Environ Health Perspect 122:970–976

    CAS  Google Scholar 

  • Allen RW, Gombojav E, Barkhasragchaa B, Byambaa T, Lkhasuren O, Amram O, Takaro TK, Janes CR (2013) An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual Atmos Health 6:137–150

    Article  CAS  Google Scholar 

  • Amini H, Taghavi-Shahri SM, Henderson SB, Naddafi K, Nabizadeh R, Yunesian M (2014) Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Sci Total Environ 488:343–353

    Article  Google Scholar 

  • Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8:166–175

    Article  CAS  Google Scholar 

  • Baumgardner D, Varela S, Escobedo FJ, Chacalo A, Ochoa C (2012) The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis. Environ Pollut 163:174–183

  • Brauer M, Hoek G, van Vliet P, Meliefste K, Fischer P, Gehring U, Heinrich J, Cyrys J, Bellander T, Lewne M (2003) Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology 14:228–239

    Google Scholar 

  • Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, Henderson SB, Krzyzanowski M, Martin RV, Van Dingenen R (2012) Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46:652–660

    Article  CAS  Google Scholar 

  • Breitner S, Liu L, Cyrys J, Brüske I, Franck U, Schlink U, Leitte AM, Herbarth O, Wiedensohler A, Wehner B (2011) Sub-micrometer particulate air pollution and cardiovascular mortality in Beijing, China. Sci Total Environ 409:5196–5204

    Article  CAS  Google Scholar 

  • Briggs D (2005) The role of GIS: coping with space (and time) in air pollution exposure assessment. J Toxicol Environ Health Part A 68:1243–1261

    Article  CAS  Google Scholar 

  • Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, Pryl K, van Reeuwijk H, Smallbone K, Van Der Veen A (1997) Mapping urban air pollution using GIS: a regression-based approach. Int J Geogr Inf Sci 11:699–718

    Article  Google Scholar 

  • Carter EM, Shan M, Yang XD, Li JR, Baumgartner J (2014) Pollutant emissions and energy efficiency of Chinese gasifier cooking stoves and implications for future intervention studies. Environ Sci Technol 48:6461–6467

    Article  CAS  Google Scholar 

  • Chen Y, Schleicher N, Chen Y, Chai F, Norra S (2014) The influence of governmental mitigation measures on contamination characteristics of PM2.5 in Beijing. Sci Total Environ 490:647–658

    Article  CAS  Google Scholar 

  • Cheng SY, Lang JL, Zhou Y, Han LH, Wang G, Chen DS (2013a) A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmos Environ 79:308–316

    Article  CAS  Google Scholar 

  • Cheng Y, Engling G, He KB, Duan FK, Ma YL, Du ZY, Liu JM, Zheng M, Weber RJ (2013b) Biomass burning contribution to Beijing aerosol. Atmos Chem Phys 13:7765–7781

    Article  CAS  Google Scholar 

  • Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  • Dong C, Shao C, Richards SH, Han LD (2014) Flow rate and time mean speed predictions for the urban freeway network using state space models. Transp Res C Emerg Technol 43(1):20–32

    Article  CAS  Google Scholar 

  • Dons E, Van Poppel M, Kochan B, Wets G, Int Panis L (2013) Modeling temporal and spatial variability of traffic-related air pollution: hourly land use regression models for black carbon. Atmos Environ 74:237–246

    Article  CAS  Google Scholar 

  • Dons E, Van Poppel M, Int Panis L, De Prins S, Berghmans P, Koppen G, Matheeussen C (2014) Land use regression models as a tool for short, medium and long term exposure to traffic related air pollution. Sci Total Environ 476:378–386

    Article  Google Scholar 

  • Du C, Liu S, Yu X, Li X, Chen C, Peng Y, Dong Y, Dong Z, Wang F (2013) Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China. Aerosol Air Qual Res 13:1598–1607. doi:10.4209/aaqr.2012.10.0274

    Google Scholar 

  • Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, Declercq C, Dedele A, Dons E, de Nazelle A (2012) Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ Sci Technol 46:11195–11205

    Article  CAS  Google Scholar 

  • Feng C, Qi Z, Yuanhua J, Jian L (2013) Research of traffic flow multi-objectives intelligent control method for junction network. Telecommun Syst 53:77–84

    Article  Google Scholar 

  • Gan WQ, Koehoorn M, Davies HW, Demers PA, Tamburic L, Brauer M (2011) Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. Environ Health Perspect 119:501–507

    Article  CAS  Google Scholar 

  • Gulliver J, Morris C, Lee K, Vienneau D, Briggs D, Hansell A (2011) Land use regression modeling to estimate historic (1962−1991) concentrations of black smoke and sulfur dioxide for Great Britain. Environ Sci Technol 45:3526–3532

    Article  CAS  Google Scholar 

  • Gupta P, Christopher SA (2009) Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. J Geophys Res: Atmos (1984–2012) 114 doi:10.1029/2008jd011497

  • He C, Convertino M, Feng ZK, Zhang SY (2013) Using LiDAR data to measure the 3D green biomass of Beijing urban forest in China. PLoS One 8:e75920

    Article  CAS  Google Scholar 

  • Henderson SB, Beckerman B, Jerrett M, Brauer M (2007) Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ Sci Technol 41:2422–2428

    Article  CAS  Google Scholar 

  • Hoek G, Meliefste K, Cyrys J, Lewné M, Bellander T, Brauer M, Fischer P, Gehring U, Heinrich J, van Vliet P (2002) Spatial variability of fine particle concentrations in three European areas. Atmos Environ 36:4077–4088

    Article  CAS  Google Scholar 

  • Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42:7561–7578

    Article  CAS  Google Scholar 

  • Hoek G, Beelen R, Kos G, Dijkema M, van der Zee SC, Fischer PH, Brunekreef B (2011) Land use regression model for ultrafine particles in Amsterdam. Environ Sci Technol 45:622–628

    Article  CAS  Google Scholar 

  • Holmes NS, Morawska L (2006) A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmos Environ 40:5902–5928

    Article  CAS  Google Scholar 

  • Hong ESA, Bae CHC (2012) Exposure of bicyclists to air pollution in Seattle, Washington hybrid analysis using personal monitoring and land use regression. Transp Res Record:59–66

  • Hou Q, An X, Wang Y, Guo J (2010) An evaluation of resident exposure to respirable particulate matter and health economic loss in Beijing during Beijing 2008 Olympic Games. Sci Total Environ 408:4026–4032

    Article  CAS  Google Scholar 

  • Hu GY, Zhang YM, Sun JY, Zhang LM, Shen XJ, Lin WL, Yang Y (2014) Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations. Atmos Res 145:1–11

    Article  Google Scholar 

  • Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, Morrison J, Giovis C (2005a) A review and evaluation of intraurban air pollution exposure models. J Expo Sci Environ Epidemiol 15:185–204

    Article  CAS  Google Scholar 

  • Jerrett M, Burnett RT, Ma R, Pope CA 3rd, Krewski D, Newbold KB, Thurston G, Shi Y, Finkelstein N, Calle EE, Thun MJ (2005b) Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 16:727–736

    Article  Google Scholar 

  • King KL, Johnson S, Kheirbek I, Lu JWT, Matte T (2014) Differences in magnitude and spatial distribution of urban forest pollution deposition rates, air pollution emissions, and ambient neighborhood air quality in New York City. Landsc Urban Plan 128:14–22

    Article  Google Scholar 

  • Lee JH, Wu CF, Hoek G, de Hoogh K, Beelen R, Brunekreef B, Chan CC (2014) Land use regression models for estimating individual NO x and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci Total Environ 472:1163–1171

    Article  CAS  Google Scholar 

  • Li C, Bai Z, Kong S, Han B, You Y, Ding X, Du S, Liu A (2010a) A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J Environ Sci-China 22:1364–1373

    Article  Google Scholar 

  • Li C, Du SY, Bai ZP, Kong SF, You Y, Bin H, Han DW, Li ZY (2010b) Application of land use regression for estimating concentrations of major outdoor air pollutants in Jinan, China. J Zhejiang Univ Sci 11:857–867. doi:10.1631/jzus.A1000092

    Article  CAS  Google Scholar 

  • Li J, Song Y, Mao Y, Mao Z, Wu Y, Li M, Huang X, He Q, Hu M (2014) Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China’s agricultural regions. Atmos Environ 92:442–448

    Article  CAS  Google Scholar 

  • McCarty JL (2011) Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States. J Air Waste Manage Assoc 61:22–34

    Article  CAS  Google Scholar 

  • McKendry IG (2000) PM10 levels in the Lower Fraser Valley, British Columbia, Canada: an overview of spatiotemporal variations and meteorological controls. J Air Waste Manage Assoc 50:443–452

    Article  CAS  Google Scholar 

  • MEPCN (2011) Determination of atmospheric articles PM10 and PM2.5 in ambient air by gravimetric method. http://english.mep.gov.cn/standards_reports/standards/Air_Environment/air_method/201111/t20111101_219390.htm. Accessed 07 Nov 2014

  • Mulholland JA, Butler AJ, Wilkinson JG, Russell AG, Tolbert PE (1998) Temporal and spatial distributions of ozone in Atlanta: regulatory and epidemiologic implications. J Air Waste Manage Assoc 48:418–426

    Article  CAS  Google Scholar 

  • Nethery E, Teschke K, Brauer M (2008) Predicting personal exposure of pregnant women to traffic-related air pollutants. Sci Total Environ 395:11–22

    Article  CAS  Google Scholar 

  • Noth EM, Hammond SK, Biging GS, Tager IB (2011) A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA. Atmos Environ 45:2394–2403

    Article  CAS  Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban Urban Green 4:115–123

    Article  Google Scholar 

  • Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ Pollut 178:395–402

    Article  CAS  Google Scholar 

  • Patton AP, Collins C, Naumova EN, Zamore W, Brugge D, Durant JL (2014) An hourly regression model for ultrafine particles in a near-highway urban area. Environ Sci Technol 48:3272–3280

    Article  CAS  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • WHO Press (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization. http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf. Accessed 25 Oct 2014

  • Qu CS, Li B, Wu HS, Giesy JP (2012) Controlling Air pollution from straw burning in China calls for efficient recycling. Environ Sci Technol 46:7934–7936

    Article  CAS  Google Scholar 

  • Ross Z, Jerrett M, Ito K, Tempalski B, Thurston GD (2007) A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmos Environ 41:2255–2269

    Article  CAS  Google Scholar 

  • Ross Z, Ito K, Johnson S, Yee M, Pezeshki G, Clougherty JE, Savitz D, Matte T (2013) Spatial and temporal estimation of air pollutants in New York City: exposure assignment for use in a birth outcomes study. Environ Health 12:51

    Article  CAS  Google Scholar 

  • Ryan PH, LeMasters GK (2007) A review of land-use regression for characterizing intraurban air models pollution exposure. Inhal Toxicol 19:127–133

    Article  CAS  Google Scholar 

  • Saraswat A, Apte JS, Kandlikar M, Brauer M, Henderson SB, Marshall JD (2013) Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi, India. Environ Sci Technol 47:12903–12911

    Article  CAS  Google Scholar 

  • Slama R, Morgenstern V, Cyrys J, Zutavern A, Herbarth O, Wichmann H-E, Heinrich J, LISA Study Group (2007) Traffic-related atmospheric pollutants levels during pregnancy and offspring’s term birth weight: a study relying on a land-use regression exposure model. Environ Health Perspect 115:1283

    Article  CAS  Google Scholar 

  • Smargiassi A, Brand A, Fournier M, Tessier F, Goudreau S, Rousseau J, Benjamin M (2012) A spatiotemporal land-use regression model of winter fine particulate levels in residential neighbourhoods. J Expo Sci Environ Epidemiol 22:331–338

    Article  CAS  Google Scholar 

  • Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40:1526–1537

    Article  CAS  Google Scholar 

  • Sun Y, Zhuang G, Wang Y, Han L, Guo J, Dan M, Zhang W, Wang Z, Hao Z (2004) The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmos Environ 38:5991–6004

    Article  CAS  Google Scholar 

  • Van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118:847

    Article  Google Scholar 

  • Wang Y, Zhuang GS, Sun YL, An ZS (2006) The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos Environ 40:6579–6591

    Article  CAS  Google Scholar 

  • Wang Y, Zhuang GS, Xu C, An ZS (2007) The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos Environ 41:417–431

    Article  CAS  Google Scholar 

  • Wang Q, Shao M, Zhang Y, Wei Y, Hu M, Guo S (2009) Source apportionment of fine organic aerosols in Beijing. Atmos Chem Phys 9:8573–8585

    Article  CAS  Google Scholar 

  • Wang JF, Hu MG, Xu CD, Christakos G, Zhao Y (2013) Estimation of citywide air pollution in Beijing. PLoS One 8:e53400

    Article  CAS  Google Scholar 

  • Wang M, Beelen R, Bellander T, Birk M, Cesaroni G, Cirach M, Cyrys J, de Hoogh K, Declercq C, Dimakopoulou K, Eeftens M, Eriksen KT, Forastiere F, Galassi C, Grivas G, Heinrich J, Hoffmann B, Ineichen A, Korek M, Lanki T, Lindley S, Modig L, Molter A, Nafstad P, Nieuwenhuijsen MJ, Nystad W, Olsson D, Raaschou-Nielsen O, Ragettli M, Ranzi A, Stempfelet M, Sugiri D, Tsai MY, Udvardy O, Varro MJ, Vienneau D, Weinmayr G, Wolf K, Yli-Tuomi T, Hoek G, Brunekreef B (2014) Performance of multi-city land use regression models for nitrogen dioxide and fine particles. Environ Health Perspect 122:843–849

    CAS  Google Scholar 

  • Wu CF, Lin HI, Ho CC, Yang TH, Chen CC, Chan CC (2014a) Modeling horizontal and vertical variation in intraurban exposure to PM2.5 concentrations and compositions. Environ Res 133:96–102

    Article  CAS  Google Scholar 

  • Wu SW, Deng FR, Wei HY, Huang J, Wang X, Hao Y, Zheng CJ, Qin Y, Lv HB, Shima M, Guo XB (2014b) Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: a combined analysis from the Healthy Volunteer Natural Relocation (HVNR) study. Environ Sci Technol 48:3438–3448

    Article  CAS  Google Scholar 

  • Xie GD, Li WH, Xiao Y, Zhang BA, Lu CX, An K, Wang JX, Xu K, Wang JZ (2010) Forest ecosystem services and their values in Beijing. Chin Geogr Sci 20:51–58. doi:10.1007/s11769-010-0051-y

    Article  Google Scholar 

  • Yu L, Wang G, Zhang R, Zhang L, Song Y, Wu B, Li X, An K, Chu J (2013) Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual Res 13:574–583. doi:10.4209/aaqr.2012.07.0192

    CAS  Google Scholar 

  • Zhang M, Wang X, Chen J, Cheng T, Wang T, Yang X, Gong Y, Geng F, Chen C (2010) Physical characterization of aerosol particles during the Chinese New Year’s firework events. Atmos Environ 44:5191–5198

    Article  CAS  Google Scholar 

  • Zhang Y, Guo Y, Li G, Zhou J, Jin X, Wang W, Pan X (2012) The spatial characteristics of ambient particulate matter and daily mortality in the urban area of Beijing, China. Sci Total Environ 435:14–20

    Article  Google Scholar 

  • Zhang A, Qi Q, Jiang L, Zhou F, Wang J (2013) Population exposure to PM2.5 in the urban area of Beijing. PLoS One 8:e63486

    Article  CAS  Google Scholar 

  • Zhao X, Zhang X, Xu X, Xu J, Meng W, Pu W (2009) Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos Environ 43:2893–2900

    Article  CAS  Google Scholar 

  • Zhao H, Che H, Zhang X, Ma Y, Wang Y, Wang H, Wang Y (2013a) Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos Pollut Res 4:427–434. doi:10.5094/apr.2013.049

    CAS  Google Scholar 

  • Zhao PS, Dong F, Yang YD, He D, Zhao XJ, Zhang WZ, Yao Q, Liu HY (2013b) Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmos Environ 71:389–398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Science Foundation of China (No. 41130534). We thank anonymous reviewers and the editor (Prof. Dr. Gerhard Lammel) for their constructive comments.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiacheng Li or Weifeng Li.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, J., Peng, J. et al. Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environ Sci Pollut Res 22, 7045–7061 (2015). https://doi.org/10.1007/s11356-014-3893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3893-5

Keywords

Navigation