Skip to main content
Log in

Enzymatic removal of paracetamol from aqueous phase: horseradish peroxidase immobilized on nanofibrous membranes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Paracetamol is a widely used as an analgesic and an antipyretic that can easily accumulate in aquatic environments. This study aimed to enhance paracetamol removal efficiency from water by combining the biocatalytic activity of horseradish peroxidase (HRP) with the adsorption of nanofibrous membrane. Poly(vinyl alcohol)/poly(acrylic acid)/SiO2 electrospinning nanofibrous membrane was prepared with fiber diameters of 200 to 300 nm. The membrane was made insoluble by the thermal cross-linking process. HRP, which was previously activated by 1,1′-carbonyldiimidazole, was covalently immobilized on the surface of nanofibers. Immobilized HRP retained 79.4 % of the activity of free HRP. The physical, chemical, and biochemical properties of the immobilized HRP and its application in paracetamol removal were comprehensively investigated. Immobilized HRP showed better storage capability and higher tolerance to the changes in pH and temperature than free HRP. Paracetamol removal rate by immobilized HRP (83.5 %) was similar to that of free HRP (84.4 %), but immobilized HRP showed excellent reusability. The results signify that enzyme immobilized on nanofibers has great application potential in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ba S et al (2014) Synthesis and characterization of combined cross-linked laccase and tyrosinase aggregates transforming acetaminophen as a model phenolic compound in wastewaters. Sci Total Environ 487:748–755. doi:10.1016/j.scitotenv.2013.10.004

    Article  CAS  Google Scholar 

  • Bai Y-X, Li Y-F, Wang M-T (2006) Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization. Enzym Microb Technol 39:540–547. doi:10.1016/j.enzmictec.2005.08.041

    Article  CAS  Google Scholar 

  • Basturk E, Demir S, Danis O, Kahraman MV (2013) Covalent immobilization of a-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J Appl Polym Sci 127:349–355. doi:10.1002/app.37901

    Article  Google Scholar 

  • Cabrita I, Ruiz B, Mestre AS, Fonseca IM, Carvalho AP, Ania CO (2010) Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chem Eng J 163:249–255. doi:10.1016/j.cej.2010.07.058

    Article  CAS  Google Scholar 

  • Caramori SS, Fernandes KF (2004) Covalent immobilisation of horseradish peroxidase onto poly(ethylene terephthalate)–poly(aniline) composite. Process Biochem 39:883–888. doi:10.1016/S0032-9592(03)00188-2

    Article  CAS  Google Scholar 

  • Cristóvão RO, Tavares AP, Brígida AI, Loureiro JM, Boaventura RA, Macedo EA, Coelho MAZ (2011) Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. J Mol Catal B Enzym 72:6–12. doi:10.1016/j.molcatb.2011.04.014

    Article  Google Scholar 

  • Dai YR, Niu JF, Liu J, Yin LF, Xu JJ (2010) In situ encapsulation of laccase in microfibers by emulsion electrospinning: preparation, characterization, and application. Bioresour Technol 101:8942–8947. doi:10.1016/j.biortech.2010.07.027

    Article  CAS  Google Scholar 

  • De Gusseme B, Vanhaecke L, Verstraete W, Boon N (2011) Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor. Water Res 45:1829–1837. doi:10.1016/j.watres.2010.11.040

    Article  Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Edit 46:5670–5703. doi:10.1002/anie.200604646

    Article  CAS  Google Scholar 

  • Gros M, Petrović M, Barceló D (2006) Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 70:678–690. doi:10.1016/j.talanta.2006.05.024

    Article  CAS  Google Scholar 

  • Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189. doi:10.1016/S0022-1694(02)00165-8

    Article  CAS  Google Scholar 

  • Hermanson GT (2013) Bioconjugate techniques. Academic

  • Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. doi:10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  • Huang X-J, Yu A-G, Xu Z-K (2008) Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol 99:5459–5465. doi:10.1016/j.biortech.2007.11.009

    Article  CAS  Google Scholar 

  • Husain Q, Ulber R (2011) Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: a review. Crit Rev Environ Sci Technol 41:770–804. doi:10.1080/10643380903299491

    Article  CAS  Google Scholar 

  • Jørgensen SE, Halling-Sørensen B (2000) Drugs in the environment. Chemosphere 40:691–699

    Article  Google Scholar 

  • Joss A et al (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696. doi:10.1016/j.watres.2006.02.014

    Article  CAS  Google Scholar 

  • Kim YH et al (2013) Enhanced stability and reusability of marine epoxide hydrolase using ship-in-a-bottle approach with magnetically-separable mesoporous silica. J Mol Catal B Enzym 89:48–51. doi:10.1016/j.molcatb.2012.12.012

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211. doi:10.1021/es011055j

    Article  CAS  Google Scholar 

  • Larson AM et al (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364–1372. doi:10.1002/hep.20948

    Article  CAS  Google Scholar 

  • Li L, Hsieh Y-L (2005) Ultra-fine polyelectrolyte hydrogel fibres from poly(acrylic acid)/poly(vinyl alcohol). Nanotechnology 16:2852. doi:10.1088/0957-4484/16/12/020

    Article  CAS  Google Scholar 

  • Lin J, Ding B, Yang J, Yu J, Sun G (2012) Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale 4:176–182. doi:10.1039/C1NR10895F

    Article  CAS  Google Scholar 

  • Liu J-Z, Song H-Y, Weng L-P, Ji L-N (2002) Increased thermostability and phenol removal efficiency by chemical modified horseradish peroxidase. J Mol Catal B Enzym 18:225–232. doi:10.1016/S1381-1177(02)00100-5

    Article  CAS  Google Scholar 

  • Liu Q, Kong X, Zhang C, Chen Y, Hua Y (2013) Immobilisation of a hydroperoxide lyase and comparative enzymological studies of the immobilised enzyme with membrane-bound enzyme. J Sci Food Agric 93:1953–1959. doi:10.1002/jsfa.5997

    Article  CAS  Google Scholar 

  • Magri ML, De Las Nieves Loustau M, Victoria Miranda M, Cascone O (2007) Immobilisation of soybean seed coat peroxidase on its natural support for phenol removal from wastewater. Biocatal Biotransfor 25:98–102. doi:10.1080/10242420601142992

    Article  CAS  Google Scholar 

  • Maloney SW, Manem J, Mallevialle J, Fiessinge F (1986) Transformation of trace organic compounds in drinking water by enzymic oxidative coupling. Environ Sci Technol 20:249–253. doi:10.1021/es00145a004

    Article  CAS  Google Scholar 

  • Meloun M, Syrový T, Vrána A (2005) The thermodynamic dissociation constants of losartan, paracetamol, phenylephrine and quinine by the regression analysis of spectrophotometric data. Anal Chim Acta 533:97–110. doi:10.1016/j.aca.2004.11.007

    Article  CAS  Google Scholar 

  • Mohamed SA, Al-Malki AL, Kumosani TA, El-Shishtawy RM (2013) Horseradish peroxidase and chitosan: activation, immobilization and comparative results. Int J Biol Macromol 60:295–300. doi:10.1016/j.ijbiomac.2013.06.003

    Article  CAS  Google Scholar 

  • Monier M, Ayad D, Wei Y, Sarhan A (2010) Immobilization of horseradish peroxidase on modified chitosan beads. Int J Biol Macromol 46:324–330. doi:10.1016/j.ijbiomac.2009.12.018

    Article  CAS  Google Scholar 

  • Mrozik A, Hupert-Kocurek K, Nowak B, Labuzek S (2008) Microbial lipases and their significance in the protection of the environment. Post Mikrobiol 47:43–50

    CAS  Google Scholar 

  • Onesios KM, Jim TY, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20:441–466. doi:10.1007/s10532-008-9237-8

    Article  CAS  Google Scholar 

  • Osma JF, Toca-Herrera JL, Rodriguez-Couto S (2010) Biodegradation of a simulated textile effluent by immobilised-coated laccase in laboratory-scale reactors. Appl Catal A Gen 373:147–153. doi:10.1016/j.apcata.2009.11.009

    Article  CAS  Google Scholar 

  • Potter DW, Miller DW, Hinson JA (1985) Identification of acetaminophen polymerization products catalyzed by horseradish peroxidase. J Biol Chem 260:12174–12180

    CAS  Google Scholar 

  • Pramparo L, Stuber F, Font J, Fortuny A, Fabregat A, Bengoa C (2010) Immobilisation of horseradish peroxidase on Eupergit (R) C for the enzymatic elimination of phenol. J Hazard Mater 177:990–1000. doi:10.1016/j.jhazmat.2010.01.017

    Article  CAS  Google Scholar 

  • Ranieri E, Verlicchi P, Young TM (2011) Paracetamol removal in subsurface flow constructed wetlands. J Hydrol 404:130–135. doi:10.1016/j.jhydrol.2011.03.015

    Article  Google Scholar 

  • Sari M, Akgöl S, Karatas M, Denizli A (2006) Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads. Ind Eng Chem Res 45:3036–3043. doi:10.1021/ie0507979

    Article  CAS  Google Scholar 

  • Selvakannan PR, Mantri K, Tardio J, Bhargava SK (2013) High surface area Au-SBA-15 and Au-MCM-41 materials synthesis: tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls. J Colloid Interface Sci 394:475–484. doi:10.1016/j.jcis.2012.12.008

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307. doi:10.1002/adsc.200700082

    Article  CAS  Google Scholar 

  • Sill TJ, von Recum HA (2008) Electro spinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. doi:10.1016/j.biomaterials.2008.01.011

    Article  CAS  Google Scholar 

  • Teng MM, Wang HT, Li FT, Zhang BR (2011) Thioether-functionalized mesoporous fiber membranes: sol-gel combined electrospun fabrication and their applications for Hg2+ removal. J Colloid Interface Sci 355:23–28. doi:10.1016/j.jcis.2010.11.008

    Article  CAS  Google Scholar 

  • Wan L-S, Ke B-B, Xu Z-K (2008) Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization. Enzym Microb Technol 42:332–339. doi:10.1016/j.enzmictec.2007.10.014

    Article  CAS  Google Scholar 

  • Wu S, Zhang L, Chen J (2012) Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol 96:875–884. doi:10.1007/s00253-012-4414-4

    Article  CAS  Google Scholar 

  • Xu R, Chi C, Li F, Zhang B (2013a) Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A. Bioresour Technol 149:111–116. doi:10.1016/j.biortech.2013.09.030

    Article  CAS  Google Scholar 

  • Xu R, Zhou Q, Li F, Zhang B (2013b) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem Eng J 222:321–329. doi:10.1016/j.cej.2013.02.074

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (51208368). The authors are also grateful for the financial support from the Ministry of Science and Technology, China (Nos. 2010DFA92820 and 2010DFA92800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Xu.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Si, Y., Li, F. et al. Enzymatic removal of paracetamol from aqueous phase: horseradish peroxidase immobilized on nanofibrous membranes. Environ Sci Pollut Res 22, 3838–3846 (2015). https://doi.org/10.1007/s11356-014-3658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3658-1

Keywords

Navigation