Skip to main content

Advertisement

Log in

Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Establishment of water quality criteria (WQC) is one procedure for protection of marine organisms and their ecosystems. This study, which integrated two separate approaches, quantitative ion character–activity relationships (QICARs) and species sensitivity distributions (SSDs), developed a novel QICAR-SSD model. The QICARs predict relative potencies of individual elements while SSDs integrate relative sensitivities among organisms. The QICAR-SSD approach was applied to derive saltwater WQC for 34 metals or metalloids. Relationships between physicochemical properties of metal ions and their corresponding potencies for acute toxicity to eight selected marine species were determined. The softness index (σp) exhibited the strongest correlation with the acute toxicity of metals (r 2 > 0.66, F > 5.88, P < 0.94 × 10−2). Predictive criteria maximum concentrations for the eight metals, derived by applying the SSD approach to values predicted by use of QICARs, were within the same order of magnitude as values recommended by the US EPA (2009). In general, the results support that the QICAR-SSD approach is a rapid method to estimate WQC for metals for which little or no information is available for marine organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeyemi JA, Deaton LE, Pesacreta TC, Klerks PL (2012) Effects of copper on osmoregulation in sheepshead minnow, Cyprinodon variegatus acclimated to different salinities. Aquat Toxicol 109:111–117

    Article  CAS  Google Scholar 

  • ANZECC/ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. John Wiley and Sons, New York

  • Bielmyer GK, Bullington JB, DeCarlo CA, Chalk SJ, Smith K (2012) The effects of salinity on acute toxicity of zinc to two euryhaline species of fish, Fundulus heteroclitus and Kryptolebias marmoratus. Integr Comp Biol 52:753–760

    Article  CAS  Google Scholar 

  • Bogaerts P, Bohatier J, Bonnemoy F (2001) Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure-activity relationships of xenobiotics: comparison with the Microtox test. Ecotox Environ Saf 49:293–301

    Article  CAS  Google Scholar 

  • Bryan GW (1971) The effects of heavy metals (other than mercury) on marine and estuarine organisms. Proc R Soc Lond B 177:389–410

    Article  CAS  Google Scholar 

  • Calabrese A, Collier RS, Nelson DA, Maclnnes JR (1973) The toxicity of heavy metals to embryos of the American oyster Crassostrea virginica. Mar Biol 18:162–166

    Article  CAS  Google Scholar 

  • CCME (2007) A protocol for the derivation of water quality guidelines for the protection of aquatic life. Canadian Council of Ministers of the Environment, Winnipeg, Canada

  • Connor PM (1972) Acute toxicity of heavy metals to some marine larvae. Mar Pollut Bull 3:70–72

    Article  Google Scholar 

  • Couillard Y, Campbell PGC, Tessier A (1993) Response of metallothionein concentrations in a freshwater bivalve (Anodonta grandis) along an environmental cadmium gradient. Limno Ocean 38:299–313

    Article  CAS  Google Scholar 

  • ECB (2003). Technical guidance documenton risk assessment-part II. European Chemicals Bureau,Institute for Health and Consumer Protection, Ispra, Italy

  • Eisler R, Hennekey RJ (1977) Acute toxicities of Cd2+, Cr6+, Hg2+, Ni2+ and Zn2+ to estuarine macrofauna. Arch Environ Contam Toxicol 6:315–323

    Article  CAS  Google Scholar 

  • Endel DW, Fowler BA (1979) Factors influencing cadmium accumulation and its toxicity to marine organisms. Environ Health Perspect 28:81–88

    Article  Google Scholar 

  • Feng CL, Wu FC, Zheng BH, Meng W, Paquin PR, Wu KB (2012a) Biotic ligand models for metals—a practical application in the revision of water quality standards in China. Environ Sci Tech 46:10877–10878

    Article  CAS  Google Scholar 

  • Feng CL, Wu FC, Zhao XL, Li HX, Chang H (2012b) Water quality criteria research and progress. Sci China Ser. D Earth Sci 55:882–891 (in Chinese)

    CAS  Google Scholar 

  • Goldberg ED (1992) Marine metal pollutants: a small set. Mar Pollut Bull 25:45–47

    Article  Google Scholar 

  • Grosell M, Blanchard J, Brix KV, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol 84:162–172

    Article  CAS  Google Scholar 

  • HKEPD (2012) Review and development of marine water quality objectives-feasibility study. EB000463-WP5-04, Hong Kong Environment Protection Department, Hong Kong, China

  • Hutchinson TH, Scholz NGW (1998) Analysis of the ecetocaquatictoxicity (EAT) database IV—comparative toxicity of chemical substances to freshwater versus saltwater organisms. Chemosph 36:143–153

    Article  CAS  Google Scholar 

  • Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752

    Article  CAS  Google Scholar 

  • Jones MM, Vaughn WK (1978) HSAB Theory and acute metal ion toxicity and detoxification processes. J lnorg Nucl Chem 40:2081–2088

    Article  CAS  Google Scholar 

  • Kaiser KLE (1980) Correlation and prediction of metal toxicity to aquatic biota. Can J Fish Aquat Sci 37:211–218

    Article  CAS  Google Scholar 

  • Leung KMY, Morritt D, Wheeler J, Whitehouse P, Sorokin N, Toy R, Holt M, Crane M (2001) Can saltwater toxicity be predicted from freshwater data? Mar Pollut Bull 42:1007–1013

    Article  CAS  Google Scholar 

  • Leung KMY, Merrington G, Warne MSJ, Wenning RJ (2014) Scientific derivation of environmental quality benchmarks for the protection of aquatic ecosystems: challenges and opportunities. Environ Sci Pollut Res 21:1–5

    Article  Google Scholar 

  • Lide DR, Haynes WM (2011) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Lussier SM, Gentile JH, Walker J (1985) Acute and chronic effects of heavy metals and cyanide on Mysidopsis bahia (crustacean: mysidacea). Aquat Toxicol 7:25–35

    Article  CAS  Google Scholar 

  • McCloskey JT, Newman MC, Clark SB (1996) Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay. Environ Toxicol Chem 15:1730–1737

    Article  CAS  Google Scholar 

  • Meng W, Wu FC (2010) Introduction to theory and methodology of water quality criteria. Science Press, Beijing

    Google Scholar 

  • Merrington G, An YJ, Grist EPM, Jeong SW, Rattikansukha C, Roe S, Schneider U, Sthiannopkao S, Suter GW, Van DR, Van SP, Wang JY, Warne MSJ, Yillia PT, Zhang XW, Leung KMY (2014) Water quality guidelines for chemicals: learning lessons to deliver meaningful environmental metrics. Environ Sci Pollut Res 21:6–16

    Article  CAS  Google Scholar 

  • Middaugh DP, Dean JM (1977) Comparative sensitivity of eggs, larvae and adults of the estuarine teleosts, Fundulus heteroclitus and Menidia menidia to cadmium. Bull Environ Contam Toxicol 17:645–652

    Article  CAS  Google Scholar 

  • Mu YS, Wu FC, Chen C, Liu YD, Zhao XL, Liao HQ, Giesy JP (2014) Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model. Environ Pollut 188:50–55

    Article  CAS  Google Scholar 

  • Newman MC, McCloskey JT, Tatara CP (1998) Using metal–ligand binding characteristics to predict metal toxicity: quantitative ion character–activity relationships (QICARs). Environ Health Perspect 106:1419–1425

    Article  CAS  Google Scholar 

  • Ownby RD, Newman MC (2003) Advances in quantitative ion character-activity relationships (QICARs): using metal-ligand binding characteristics to predict metal toxicity. QSAR Comb Sci 22:241–246

    Article  CAS  Google Scholar 

  • Pearson RG, Mawby RJ (1967) The nature of metal–halogen bonds. Halogen Chem 3:55–84

    Article  CAS  Google Scholar 

  • Pillard DA, Dufresne DL, Mickley MC (2002) Development and validation of models predicting the toxicity of major seawater ions to the mysid shrimp, Americamysis bahia. Environ Toxicol Chem 21:2131–2137

    Article  CAS  Google Scholar 

  • Snell TW, Moffat BD, Janssen C, Persoone G (1991) Acute toxicity tests using rotifers. III. Effects of temperature, strain, and exposure time on the sensitivity of Brachionus plicatilis. Environ Toxicol Water Qual 6:63–75

    Article  CAS  Google Scholar 

  • Stephan CE, Mount DI, Hansen DJ, Gantile JR, Chapman GA, Brungs WA(1985) Guidelines for deriving numerical National water quality criteria for the protection of aquatic organisms and their uses. U.S. Environmental Protection Agency Report PB85-227049, Office of Water Regulations and Standards Criteria, Washington, DC, USA

  • Sunda WG, Engel DW, Thuotte RM (1978) Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio: importance of free cadmium ion. Environ Sci Tech 12:409–413

    Article  CAS  Google Scholar 

  • Tatara CP, Newman MC, McCloskey JT, Williams PL (1998) Use of ion characteristics to predict relative toxicity of mono-, di- and trivalent metal ions: Caenorhabditis elegans LC50. Aquat Toxicol 42:255–269

  • Turner JE, Lee EH, Jacobson KB, Christie NT, Williams MW, Hoeschele JD (1983) Investigation of correlations between chemical parameters of metal ions and acute toxicity in mice and drosophila. Sci Total Environ 28:343–354

    Article  CAS  Google Scholar 

  • US EPA (1980) Ambient water quality criteria for lead. U.S. Environmental Protection Agency, EPA 400/5-80-057, Office of Water, Washington, DC, USA

  • US EPA (2001) Update of ambient water quality criteria for cadmium. U.S. Environmental Protection Agency, EPA 822-R-01-001, Office of Water, Washington, DC, USA

  • US EPA (2003) Draft update of ambient water quality criteria for copper. U.S. Environmental Protection Agency Report  EPA-822-R-03-026, Office of Water, Office, Washington, DC, USA

  • US EPA (2009) National recommended water quality criteria. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC, USA

  • Van Vlaardingen PLA, Verbruggen EMJ (2007) Guidance for the derivation of environmental risk limits within the framework of ‘International and National Environmental Quality Standards for Substances in the Netherlands’ (INS). National Institute for Public Health and the Environment, Bitlhoven

    Google Scholar 

  • Verslycke T, Vangheluwe M, Heijerick D, Schamphelaere KD, Sprang PV, Janssen CR (2003) The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity. Aquat Toxicol 64:307–315

    Article  CAS  Google Scholar 

  • Voyer RA (1975) Effect of dissolved oxygen concentration on the acute toxicity of cadmium to the mummichog, Fundulus heteroclitus (L.), at various salinities. Trans Am Fish Soc 104:129–134

    Article  CAS  Google Scholar 

  • Warne MSJ, Batley GE, Braga O, Chapman JC, Fox DR, Hickey CW, Stauber JL, Van Dam R (2014) Revisions to the derivation of the Australian and New Zealand guidelines for toxicants in fresh and marine waters. Environ Sci Pollut Res 21:51–60

    Article  Google Scholar 

  • Wheeler JR, Leung KMY, Morritt D, Sorokin N, Rogers H, Toy R, Holt M, Whitehouse P, Crane M (2002) Freshwater to saltwater toxicity extrapolation using species sensitivity distribution. Environ Toxicol Chem 21:2459–2467

    Article  CAS  Google Scholar 

  • Wolterbeek HT, Verburg TG (2001) Predicting metal toxicity revisited: general properties vs. specific effects. Sci Total Environ 279:87–115

    Article  CAS  Google Scholar 

  • Wu FC, Meng W, Song YH, Liu ZT, Jin XC, Zheng BH, Wang YY, Wang SR, Jiang X, Lu SY, Chu ZS, Chen YQ, Wang C, Hua ZL, Wang PF, Yu ZQ, Fu JM (2008) Research progress in lake water quality criteria in China. Acta Sci Circumstant 28:2385–2393 (in Chinese)

    CAS  Google Scholar 

  • Wu FC, Meng W, Zhao XL, Li HX, Zhang RQ, Cao YJ, Liao HQ (2010) China embarking on development of its own national water quality criteria system. Environ Sci Tech 44:7992–7993

    Article  CAS  Google Scholar 

  • Wu FC, Meng W, Cao YJ, Li HX, Zhang RQ, Feng CL, Yan ZG (2011a) Derivation of aquatic life water quality criteria for cadmium in freshwater in China. Res Environ Sci 24:172–184 (in Chinese)

    CAS  Google Scholar 

  • Wu FC, Meng W, Zhang RQ, Li HX, Cao YJ, Xu BB, Feng CL (2011b) Aquatic life water quality criteria for nitrobenzene in freshwater. Res Environ Sci 24:1–10, in Chinese

    Google Scholar 

  • Wu FC, Feng CL, Zhang RQ, Li YS, Du DY (2012) Derivation of water quality criteria for representative water-body pollutants in China. Sci China Ser. D Earth Sci 55:900–906 (in Chinese)

    CAS  Google Scholar 

  • Wu FC, Mu YS, Chang H, Zhao XL, Giesy JP, Wu KB (2013) Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids. Environ Sci Tech 47:446–453

    Article  CAS  Google Scholar 

  • Zhou DM, Li LZ, Willie JGMP, Ownby DR, Hendriks AJ, Wang P, Li DD (2011) A QICAR approach for quantifying binding constants for metal-ligand complexes. Ecotox Environ Saf 74:1036–1042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the National Basic Research Program of China (973 Program) (No. 2008CB418200), the National Natural Science Foundation of China (No.U0833603 and 41130743), and the National Water Pollution Control and Management Technology Major Projects of China (2012ZX07503- 003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengchang Wu.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Mu, Y., Wu, F. et al. Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model. Environ Sci Pollut Res 22, 4297–4304 (2015). https://doi.org/10.1007/s11356-014-3655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3655-4

Keywords

Navigation