Skip to main content

Advertisement

Log in

Groundwater-surface water interactions in the hyporheic zone under climate change scenarios

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alaghmand S, Beecham S, Hassanl A (2013) A review of the numerical modelling of salt mobilization from groundwater-surface water interactions. Water Res 40:325–341

    CAS  Google Scholar 

  • Alam MJ, Dutta D (2013) Predicting climate change impact on nutrient pollution in waterways: a case study in the upper catchment of the Latrobe River, Australia. Ecohydrology 6(1):73–82

    CAS  Google Scholar 

  • Alley WM, Healy RW, LaBaugh JW, Reilly TE (2002) Flow and storage in groundwater systems. Science 296(5575):1985–1990

    CAS  Google Scholar 

  • Arnell NW (2003) Effects of IPCC SRES emissions scenarios on river runoff: a global perspective. Hydrol Earth Syst Sci 7(5):619–641

    Google Scholar 

  • Arnell NW, Gosling SN (2013) The impacts of climate change on river flow regimes at the global scale. J Hydrol 486:351–364

    Google Scholar 

  • Baker MA, Dahm CN, Valett HM (1999) Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnol Oceanogr 44:1530–1539

    CAS  Google Scholar 

  • Bardini L, Boano F, Cardenas MB, Revelli R, Ridolfi L (2012) Nutrient cycling in bedform induced hyporheic zones. Geochim Cosmochim Acta 84:47–61

    CAS  Google Scholar 

  • Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes—a comparison of methods. Environ Sci Technol 36:3354–3361

    CAS  Google Scholar 

  • Bastviken D, Cole JJ, Pace ML, Tranvik LJ (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles. doi:10.1029/2004GB002238

    Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50

    CAS  Google Scholar 

  • Battin T, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Pack-man AI, Newbold L, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial net-works. Nat Geosci 1:95

    CAS  Google Scholar 

  • Beaulieu JJ, Tank JL, Hamilton SK et al (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci U S A 108(1):214–219

    CAS  Google Scholar 

  • Bernhardt ES (2013) Cleaner lakes are dirtier lakes. Science 342:205–206

    CAS  Google Scholar 

  • Billett MF, Moore TR (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Process 22(12):2044–2054

    CAS  Google Scholar 

  • Bilotta GS, Brazier RE (2008) Understanding the effects of suspended solids on water quality and aquatic biota. Water Res 42:2849–2861

    CAS  Google Scholar 

  • Birgand F, Skaggs RW, Chescheir GM, Gilliam JW (2007) Nitrogen removal in streams of agricultural catchments—a literature review. Crit Rev Environ Sci Technol 37(5):381–487

    CAS  Google Scholar 

  • Boano F, Demaria A, Revelli R, Ridolfi L (2010) Biogeochemical zonation due to intrameander hyporheic flow. Water Resour Res. doi:10.1029/2008WR007583

    Google Scholar 

  • Boano F, Revelli R, Ridolfi L (2013) Modeling hyporheic exchange with unsteady stream discharge and bedform dynamics. Water Resour Res 49(7):4089–4099

    Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst 29:59–81

    Google Scholar 

  • Boulton AJ, Fenwick GD, Hancock PJ, Harvey MS (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr Syst 22:103–116

    Google Scholar 

  • Boulton AJ, Datry T, Kasahara T, Mutz M, Stanford JA (2010) Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains. J N Am Benthol Soc 29(1):26–40

    Google Scholar 

  • Bouraoui F, Grizzetti B, Granlund K, Rekolainen S, Bidoglio G (2004) Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Clim Chang 66:109–126

    CAS  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Google Scholar 

  • Buendia C, Gibbins CN, Vericat D, Batalla RJ, Douglas A (2013) Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecol Indic 25:184–196

    Google Scholar 

  • Buriankova I, Brablcova L, Mach V, Hyblova A, Badurova P, Cupalova J, Cap L, Rulik M (2012) Methanogens and methanotrophs distribution in the hyporheic sediments of a small lowland stream. Fundam Appl Limnol 181(2):87–102

    CAS  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science 330(6001):192–196

    CAS  Google Scholar 

  • Chen Z, Grasby S, Osadetz K (2004) Relation between climate variabilityand groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J Hydrol 290:43–62

    CAS  Google Scholar 

  • Chien HC, Yeh P, Knouft JH (2013) Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J Hydrol 491:73–88

    Google Scholar 

  • Colette A, Bessagnet B, Vautard R et al (2013) European atmosphere in 2050, a regional air quality and climate perspective under CMIP5 scenarios. Atmos Chem Phys 13:7451–7471

    CAS  Google Scholar 

  • Cozzetto K, McKnight D, Nylen T, Fountain A (2006) Experimental investigations into processes controlling stream and hyporheic temperatures, Fryxell Basin, Antarctica. Adv Water Resour 29(2):130–153

    Google Scholar 

  • Crispell JK, Endreny TA (2009) Hyporheic exchange flow around constructed in-channel structures and implications for restoration design. Hydrol Process 23:1158–1168

    Google Scholar 

  • Crosbie R, Pickett T, Mpelasoka FS et al (2013) An assessment of climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs. Clim Chang 117:41–53

    Google Scholar 

  • Datry T (2012) Benthic and hyporheic invertebrate assemblages along a flow intermittence gradient: effects of duration of dry events. Freshw Biol 57(3):563–574

    Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A et al (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676

    CAS  Google Scholar 

  • Di Lorenzo T, Stoch F, Galassi D (2013) Incorporating the hyporheic zone within the river discontinuum: longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica 43(4):288–296

    Google Scholar 

  • Dole-Olivier MJ (2011) The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects. Mar Freshw Res 62(11):1281–1302

    Google Scholar 

  • Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Chang 54:269–293

    Google Scholar 

  • Döll P, Flörke M (2005) Global-scale estimation of diffuse groundwater recharge, Frankfurt Hydrology Paper 03. Institute of Physical Geography, Frankfurt University, Germany

    Google Scholar 

  • Döll P, Müller Schmied H (2012) How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ Res Lett. doi:10.1088/1748-9326/7/1/014037

    Google Scholar 

  • Döll P, Zhang J (2010) Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol Earth Syst Sci Discuss 7:1305–1342

    Google Scholar 

  • Donn MJ, Barron OV (2013) Biogeochemical processes in the groundwater discharge zone of urban streams. Biogeochemistry 115(1–3):267–286

    CAS  Google Scholar 

  • Dore JE, Popp BN, Karl DM, Sansone FJ (1998) A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature 396:63–66

    CAS  Google Scholar 

  • Edwardson K, Bowden W, Dahm C, Morrice J (2003) The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Artic tundra streams, North Slope, Alaska. Adv Water Resour 26:907–923

    CAS  Google Scholar 

  • Fang HJ, Yu GR, Cheng SL, Zhu TH, Wang YS, Yan JH, Wang M, Cao M, Zhou M (2010) Effects of multiple environmental factors on CO2 emission and CH4 uptake from old-growth forest soils. Biogeosciences 7(1):395–407

    CAS  Google Scholar 

  • Febria CM, Beddoes P, Fulthorpe RR, Williams DD (2012) Bacterial community dynamics in the hyporheic zone of an intermittent stream. ISME J 6(5):1078–1088

    CAS  Google Scholar 

  • Fellows CS, Valet HM, Dahm CN (2001) Whole-stream metabolism in two montane streams: contribution of the hyporheic zone. Limnol Oceanogr 46:523–531

    Google Scholar 

  • Ficklin DL, Stewart IT, Maurer EP (2013a) Climate change impacts on streamflow and subbasin-scale hydrology in the upper Colorado River Basin. PLoS One. doi:10.1371/journal.pone.0071297

    Google Scholar 

  • Ficklin DL, Stewart IT, Maurer EP (2013b) Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resour Res 49(5):2765–2782

    Google Scholar 

  • Gibson CA, Meyer JL, Poff NL, Hay LE, Georgakakos A (2005) Flow regime alterations under changing climate in two river basins: implications for freshwater ecosystems. River Res Appl 21(8):849–864

    Google Scholar 

  • Hancock PJ (2002) Human impacts on the stream–groundwater exchange zone. Environ Manag 29:763–781

    Google Scholar 

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13(1):98–111

    CAS  Google Scholar 

  • Hanson RT, Flint LE, Flint AL et al (2012) A method for physically based model analysis of conjunctive use inresponse to potential climate changes. Water Resour Res 48(6):W00L08

  • Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334(6059):1124–1127

    CAS  Google Scholar 

  • Harvell D, Altizer S, Cattadori I, Harrington L, Weil E (2009) Climate change and wildlife diseases: when does the host matter the most? Ecologica 90:912–920

    Google Scholar 

  • Hester ET, Gooseff MN (2010) Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environ Sci Technol 44:1521–1525

    CAS  Google Scholar 

  • Hiscock K, Sparkes R, Hodgens A (2012) Evaluation of future climate change impacts on European groundwater resources. Climate change effects on groundwater resources: a global synthesis of findings and recommendations. IAH International Contributions to Hydrogeology. Taylor and Francis, London

    Google Scholar 

  • Hochachka P, Somero G (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the World’s marine ecosystems. Science 328(5985):1523–1528

    CAS  Google Scholar 

  • Hrdinka T, Novický O, Hanslík E, Rieder M (2012) Possible impacts of floods and droughts on water quality. J Hydro Environ Res 6(2):145–150

    Google Scholar 

  • IPCC (2001) Climate change 2001. The scientific basis. In: Houghton D, Griggs N, Van der Linder D, Maskell J (eds) Contribution of Working Group I to the third assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Human health. Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson TR, Haggerty R, Apte SV (2013) A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage. Hydrol Earth Syst Sci 17(7):2747–2779

    Google Scholar 

  • Jahangir MMR, Johnsto P, Barrett M, Khalil MI, Groffman PM, Boeckx P, Fenton O, Murphy J, Richards KG (2013) Denitrification and indirect N2O emissions in groundwater: hydrologic and biogeochemical influences. J Contam Hydrol 152:70–81

    CAS  Google Scholar 

  • Jain AK, Briegleb BP, Minschwaner K, Wuebbles DJ (2000) Radiative forcings and global warming potentials of 39 greenhouse gases. J Geophys Res 105:20773–20790

    CAS  Google Scholar 

  • Jones JAA (2011) Sustaining groundwater resources. Springer, Netherlands

    Google Scholar 

  • Kasahara T, Hill AR (2008) Modeling the effects of lowland stream restoration projects on stream-subsurface water exchange. Ecol Eng 32(4):310–319

    Google Scholar 

  • Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ et al (2013) Climate change impacts on groundwater and dependent ecosystems. J Hydrol. doi:10.1016/j.jhydrol.2013.06.037

    Google Scholar 

  • Krause S, Hannah DM, Fleckenstein JH (2009a) Hyporheic hydrology: interactions at the groundwater-surface water interface. Hydrol Process 23(15):2103–2107

    Google Scholar 

  • Krause S, Heathwaite L, Binley A, Keenan P (2009b) Nitrate concentration changes along the groundwater-surface water interface of a small Cumbrian river. Hydrol Process 23(15):2195–2211

    CAS  Google Scholar 

  • Krause S, Hannah DM, Fleckenstein JH, Heppell CM, Kaeser D, Pickup R, Pinay G, Robertson AL, Wood PJ (2011) Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4(4SI):481–499

    CAS  Google Scholar 

  • Kroeze C, Seitzinger SP (1998) Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model. Nutr Cycl Agroecosyst 52:195–212

    CAS  Google Scholar 

  • Kundzewicz ZW, Krysanova V (2010) Climate change and stream water quality in the multi-factor context. Clim Chang 103:353–362

    Google Scholar 

  • Kurylyk BL, Bourque C, MacQuarrie K (2013) Potential surface temperature and shallow groundwater temperature response to climate change: an example from a small forested catchment in east-central New Brunswick (Canada). Hydrol Earth Syst Sci 17:2701–2716

    Google Scholar 

  • Labat D, Godderis Y, Probst JL, Guyot JL (2004) Evidence for global runoff increase related to climate warming. Adv Water Resour 27(6):631–642

    Google Scholar 

  • Lee A, Cho S, Kang DK, Kim S (2013) Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration. J Hydro Environ Res. doi:10.1016/j.jher.2013.09.003

  • Leigh C, Stubbington R, Sheldon F, Boulton AJ (2013) Hyporheic invertebrates as bioindicators of ecological health in temporary rivers: a meta-analysis. Ecol Indic 32:62–73

    Google Scholar 

  • Leung LR, Huang M, Qian Y et al (2011) Climate–soil–vegetation control on groundwater table dynamics and its feedbacks in a climate model. Clim Dyn 36(1–2):57–81

    Google Scholar 

  • Louis VLS, Kelly CA, Duchemin E et al (2000) Reservoir surface as source of greenhouse gases to the atmosphere: a global estimate. Bioscience 50(9):766–775

    Google Scholar 

  • Lu X-X, Ran L-S, Liu S, Jiang T, Zhang S-R, Wang J-J (2013) Sediment loads response to climate change: a preliminary study of eight large Chinese rivers. Int J Sed Res 28(1):1–14

    Google Scholar 

  • Machler L, Brennwald MS, Kipfer R (2013) Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone. Environ Sci Technol 47(13):7060–7066

    CAS  Google Scholar 

  • Marzadri A, Tonina D, Bellin A (2013) Effects of stream morphodynamics on hyporheic zone thermal regime. Water Resour Res 49(4):2287–2302

    Google Scholar 

  • Massmann G, Simmons CT, Love A, Ward J, Smith A (2006) On variable density surface water-groundwater interaction: a theoretical analysis of mixed convection in a stably-stratified fresh surface water-saline groundwater discharge zone. J Hydrol 326:390–402

    Google Scholar 

  • McMahon PB, Dennehy KF (1999) N2O emissions from a nitrogen-enriched river. Environ Sci Technol 33:21–25

    CAS  Google Scholar 

  • Mermillod-Blondin F, Mauclaire L, Montuelle B (2005) Use of slow filtration columns to assess oxygen respiration, consumption of dissolved organic carbon, nitrogen transformations, and microbial parameters in hyporheic sediments. Water Res 39(9):1687–1698

    CAS  Google Scholar 

  • Meyer JL, Sale MJ, Mulholland PJ, Poff NL (1999) Impacts of climate change on aquatic ecosystem functioning and health. J Am Water Resour Assoc 35(6):1373–1386

    Google Scholar 

  • Milly P, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(7066):347–350

    CAS  Google Scholar 

  • Mimikou MA, Baltas E, Varanou E, Pantazis K (2000) Regional impacts of climate change on water resources quantity and quality indicators. J Hydrol 234(1–2):95–109

    CAS  Google Scholar 

  • Mori N, Simcic T, Zibrat U, Brancelj A (2012) The role of river flow dynamics and food availability in structuring hyporheic microcrustacean assemblages: a reach scale study. Fundam Appl Limnol 180(4):335–349

    CAS  Google Scholar 

  • Muia AW, Bretschko G, Herndl GJ (2011) An overview of the structure and function of microbial biofilms, with special emphasis on heterotrophic aquatic microbial communities. Afr J Aquat Sci 36(1):1–10

    Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC et al (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452(7184):202–246

    CAS  Google Scholar 

  • Navel S, Mermillod-Blondin F, Montuelle B, Chauvet E, Marmonier P (2012) Sedimentary context controls the influence of ecosystem engineering by bioturbators on microbial processes in river sediments. Oikos 121(7):1134–1144

    Google Scholar 

  • Nelson GC, Rosegrant MW, Koo J et al (2009) Climate change impact on agriculture and costs of adaptation. Food Policy Report IFPRI, Washington

    Google Scholar 

  • NRC (2010) Advancing the science of climate change. National Research Council. The National Academies Press, Washington

    Google Scholar 

  • Null SE, Viers JH, Deas ML, Tanaka SK, Mount JF (2013) Stream temperature sensitivity to climate warming in California’s Sierra Nevada: impacts to coldwater habitat. Clim Chang 116(1):149–170

    Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

    CAS  Google Scholar 

  • Park HK, Cho KH, Won DH, Lee J, Kong DS, Jung DI (2013) Ecosystem responses to climate change in a large on-river reservoir, Lake Paldang, Korea. Clim Chang 120(1–2):477–489

    Google Scholar 

  • Peyrard D, Delmotte S, Sauvage S, Namour P, Gerino M, Vervier P, Sanchez-Perez JM (2011) Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: a combined modelling and field study. Phys Chem Earth 36:599–611

    Google Scholar 

  • Puckett LJ (2004) Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: results from thirteen studies across the US. Water Sci Technol 49(3):47–53

    CAS  Google Scholar 

  • Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    CAS  Google Scholar 

  • Revelli R, Boano F, Camporeale C, Ridolfi L (2008) Intra-meander hyporheic flow in alluvial rivers. Water Resour Res. doi:10.1029/2008WR007081

    Google Scholar 

  • Robertson AL, Wood PJ (2010) Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundam Appl Limnol 176(4):279–289

    Google Scholar 

  • Salmon-Monviola J, Moreau P, Benhamou C, Durand P, Merot P, Oehler F, Gascuel-Odoux C (2013) Effect of climate change and increased atmospheric CO2 on hydrological and nitrogen cycling in an intensive agricultural headwater catchment in western France. Clim Chang 120(1–2):433–447

    CAS  Google Scholar 

  • Sanford E (1999) Regulation of keystone predation by small changes in ocean temperature. Science 283(5410):2095–2097

    CAS  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

    CAS  Google Scholar 

  • Scheurer K, Alewell C, Banninger D, Burkhardt-Holm P (2009) Climate and land-use changes affecting river sediment and brown trout in alpine countries—a review. Environ Sci Pollut Res 16(2):232–242

    Google Scholar 

  • Schindler DW (1997) Widespread effects of climatic warming on freshwater ecosystems in north America. Hydrol Process 11:1043–1067

    Google Scholar 

  • Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob Biogeochem Cycles 12:93–113

    CAS  Google Scholar 

  • Shen Y, Chen Y (2010) Global perspective on hydrology, water balance, and water resources management in arid basins. Hydrol Process 24(2):129–135

    Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10(1):52–67

    CAS  Google Scholar 

  • Spruill TB (2000) Statistical evaluation of effects of riparian buffers on nitrate and groundwater quality. J Environ Qual 29:1523–1538

    CAS  Google Scholar 

  • Stanford JA, Ward JV (1988) The hyporheic habitat of river ecosystems. Nature 335:64–66

    Google Scholar 

  • Stelzer RS, Bartsch LA, Richardson WB, Strauss EA (2011) The dark side of the hyporheic zone: depth profiles of nitrogen and its processing in stream sediments. Freshw Biol 56(10):2021–2033

    CAS  Google Scholar 

  • Stow CA, Walker JT, Cardoch L, Spence P, Geron C (2005) N2O emissions from streams in the Neuse river watershed, North Carolina. Environ Sci Technol 39(18):6999–7004

    CAS  Google Scholar 

  • Stubbington R, Wood PJ, Boulton AJ (2009) Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought. Hydrol Process 23:2252–2263

  • Stubbington R, Wood PJ, Reid I, Gunn J (2011) Benthic and hyporheic invertebrate community responses to seasonal flow recession in a groundwater-dominated stream. Ecohydrology 4(4SI):500–511

    Google Scholar 

  • Suddick EC, Whitney P, Townsend AR et al (2013) The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry 114(1–3):1–10

    CAS  Google Scholar 

  • Syvitski J (2003) Supply and flux of sediment along hydrological pathways: research for the 21st century. Glob Planet Chang 39(1–2):1–11

    Google Scholar 

  • Taylor RG, Scanlon B, Döll P et al (2013) Ground water and climate change. Nat Clim Chang 3:322–329

    Google Scholar 

  • Taylor CA, Stefan HG (2009) Shallow groundwater temperature response to climate change and urbanization. J of Hydrol 375: 601–612

  • Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A (2013) Role of organic amendment application on greenhouse gas emission from soil. Sci Total Environ 465:72–96

    CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6, part 2):2298–2314

    CAS  Google Scholar 

  • Valett HM, Fisher SG, Grimm NB, Camill P (1994) Vertical Hydrologic exchange and ecological stability of a desert stream ecosystem. Ecologica 75(2):548–560

    Google Scholar 

  • van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Chang 23(2):450–464

    Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31

    Google Scholar 

  • Wallin MB, Grabs T, Buffam I, Laudon H, Ågren A, Öquist MG, Bishop K (2013) Evasion of CO2 from streams—the dominant component of the carbon export through the aquatic conduit in a boreal landscape. Glob Chang Biol 19(3):785–797

    Google Scholar 

  • Wang H-W, Kuo P-H, Shiau J-T (2013) Assessment of climate change impacts on flooding vulnerability for lowland management in southwestern Taiwan. Nat Hazards 68(2):1001–1019

    Google Scholar 

  • Wheeler T, Joachim VB (2013) Climate change impacts on global food security. Science 341:508–513

    CAS  Google Scholar 

  • Wilcock RJ, Sorrell BK (2008) Emissions of Greenhouse Gases CH4 and N2O from low-gradient Streams in agriculturally developed catchments. Water Air Soil Pollut 188:155–170

    CAS  Google Scholar 

  • Williams DD, Febria CM, Wong J (2010) Ecotonal and other properties of the hyporheic zone. Fundam Appl Limnol 176(4):349–364

    Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. USGS Circ 1139:79

  • Wu Y, Liu S, Abdul-Aziz OI (2012) Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT. Clim Chang 110(3–4):977–1003

    Google Scholar 

  • Zarnetske JP, Haggerty R, Wondzell SM, Baker MA (2011) Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. J Geophys Res Biogeosci 116, G01025. doi:10.1029/2010JG001356

    Google Scholar 

  • Zeglin LH, Dahm CN, Barrett JE, Gooseff MN, Fitpatrick SK, Takacs-Vesbach CD (2011) Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams. Microb Ecol 61(3):543–556

    Google Scholar 

  • Zhou Y, Zwahlen F, Wang Y-X, Li Y-L (2010) Impact of climate change on irrigation requirements in terms of groundwater resources. Hydrogeol J 18(7):1571–1582

    Google Scholar 

  • Zhu Y-M, Lu X-X, Zhou Y (2008) Sediment flux sensitivity to climate change: a case study in the Longchuanjiang catchment of the upper Yangtze River, China. Glob Planet Chang 60(3–4):429–442

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Natural Science Foundation of China (Project 51179214). The authors acknowledge the perceptive comments of Professor Boulton of Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2350 Australia, which have led to a substantial improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhong Yuan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Yuan, X., Peng, S. et al. Groundwater-surface water interactions in the hyporheic zone under climate change scenarios. Environ Sci Pollut Res 21, 13943–13955 (2014). https://doi.org/10.1007/s11356-014-3255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3255-3

Keywords

Navigation