Skip to main content
Log in

Effects of aluminium and bacterial lipopolysaccharide on oxidative stress and immune parameters in roach, Rutilus rutilus L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aluminium is used in diverse anthropogenic processes at the origin of pollution events in aquatic ecosystems. In the Champagne region (France), high concentrations of aluminium (Al) are detected due to vine-growing practices. In fish, little is known about the possible immune-related effects at relevant environmental concentrations. The present study analyzes the simultaneous effects of aluminium and bacterial lipopolysaccharide (LPS), alone and in combination, on toxicological biomarkers in the freshwater fish species Rutilus rutilus. For this purpose, roach treated or not with LPS were exposed to environmental concentrations of aluminium (100 μg/L) under laboratory-controlled conditions for 2, 7, 14 and 21 days. After each exposure time, we assessed hepatic lipoperoxidation, catalase activity, glutathione reductase activity and total glutathione content. We also analyzed cellular components related to the LPS-induced inflammatory response in possible target tissues, i.e. head kidney and spleen. Our results revealed a significant prooxidant effect in the liver cells and head kidney leukocytes of roach exposed to 100 μg of Al/L for 2 days. In liver, we observed more lipoperoxidation products and lower endogenous antioxidant activity levels such as glutathione reductase activity and total glutathione content. These prooxidant effects were associated with a higher oxidative burst in head kidney leukocytes, and they were all the more important in fish stimulated by LPS injection. These findings demonstrate that environmental concentrations of Al induce oxidative and immunotoxic effects in fish and are associated to an immunomodulatory process related to the inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexopoulos E, McCrohan CR, Powell JJ, Jugdaohsingh R, White KN (2003) Bioavailability and toxicity of freshly neutralized aluminium to the freshwater crayfish Pacifasticus leniusculus. Arch Environ Contam Toxicol 45:509–514

    CAS  Google Scholar 

  • Allin CJ, Wilson RW (2000) Effects of pre-acclimation to aluminium on the physiology and swimming behavior of juvenile rainbow trout (Oncorhyncus mykiss) during a pulsed exposure. Aquat Toxicol 51:213–224

    CAS  Google Scholar 

  • Andres S, Ribeyre F, Tourencq JN, Boudou A (2000) Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci Total Environ 248:11–25

    CAS  Google Scholar 

  • Atli G, Canli M (2010) Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicol Environ Saf 73:1884–1889

    CAS  Google Scholar 

  • ATSDR (2008) Toxicological profiles for aluminum. Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S. department of Health and Human Services, Public Health Services. http://www.atsdr.cdc.gov/toxprofiles/tp22.pdf

  • Babo S, Vasseur P (1992) In vitro effects of Thiram on liver antioxidant enzyme activities of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 22:61–68

    CAS  Google Scholar 

  • Barcarolli IF, Martinez CBR (2004) Effects of Aluminum in acidic water on hematological and physiological parameters of the neotropical fish Leporinus macrocephalus (Anostomidae). Bull Environ Contam Toxicol 72:639–646

    CAS  Google Scholar 

  • Bazzoni GB, Bollini AN, Hernández GN, Del Carmen Contini M, Chiarotto MM, Rasia ML (2005) In vivo effect of aluminium upon the physical properties of the erythrocyte membrane. J Inorg Biochem 99:822–827

    CAS  Google Scholar 

  • Ben-Shaul V, Sofer Y, Bergman M, Zurovsky Y, Grossman S (1999) Lipopolysaccharide-induced oxidative stress in the liver: comparison between rat and rabbit. Shock 12:288–293

    CAS  Google Scholar 

  • Ben-Shaul V, Lomnitski L, Nyska A, Zurovsky Y, Bergman M, Grossman S (2001) The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett 123:1–10

    CAS  Google Scholar 

  • Betoulle S, Duchiron C, Deschaux P (2000) Lindane increases in vitro respiratory burst activity and intracellular calcium levels in rainbow trout (Oncorhynchus mykiss) head kidney phagocytes. Aquat Toxicol 48:211–221

    CAS  Google Scholar 

  • Bielek E, Bigaj J, Chadzińska M, Plytycz B (1999) Depletion of head kidney neutrophils and cells with basophilic granules during peritoneal inflammation in the goldfish, Carassius auratus. Folia Biol 47:33–42

    CAS  Google Scholar 

  • Bols NC, Brubacher JL, Ganassin RC, Lee LEJ (2001) Ecotoxicology and innate immunity in fish. Dev Comp Immunol 25:853–873

    CAS  Google Scholar 

  • Bony S, Gillet C, Bouchez A, Margoum C, Devaux A (2008) Genotoxic pressure of vineyard pesticides in fish: field and mesocosm surveys. Aquat Toxicol 89:197–203

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Brown TS, Schwartz R (1992) Aluminum accumulation in serum liver and spleen of Fe-depleted and Fe-adequate rats. Biol Trace Elem Res 34:1–10

    CAS  Google Scholar 

  • Camargo MPM, Fernandes MN, Martinez CBR (2009) How aluminium exposure promotes osmoregulatory disturbances in the neotropical freshwater fish Prochilus lineatus. Aquat Toxicol 94:40–46

    CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    CAS  Google Scholar 

  • Carru AM, Teil MJ, Blanchard M, Chevreuil M, Chesterikoff A (1996) Evaluation of the roach (Rutilus rutilus) and the perch (Perca fluviatilis) for the biomonitoring of metal pollution. J Environ Sci Health A 31:1149–1158

    Google Scholar 

  • Correia TG, Narcizo AM, Bianchini A, Moreira RG (2010) Aluminum as an endocrine disruptor in female Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C 151:461–466

    CAS  Google Scholar 

  • Cossarini-Dunier M (1988) Effects of manganese ions on the immune response of carp, (Cyprinus carpio) against Yersinia ruckeri. Dev Comp Immunol 12:579–579

    Google Scholar 

  • Dautremepuits C, Betoulle S, Vernet G (2002) Antioxidant response modulated by copper in healthy or parasitized carp (Cyprinus carpio L.) by Ptychobothrium sp. (Cestoda). Biochim Biophys Acta 1573:4–8

    CAS  Google Scholar 

  • Dautremepuits C, Betoulle S, Paris-Palacios S, Vernet G (2004a) Immunology-related perturbations induced by copper and chitosan in carp (Cyprinus carpio L.). Arch Environ Contam Toxicol 47:370–378

    CAS  Google Scholar 

  • Dautremepuits C, Betoulle S, Paris-Palacios S, Vernet G (2004b) Humoral immune factors modulated by copper and chitosan in healthy or parasited carp (Cyprinus carpio L.) by Ptychobothrium sp. (Cestoda). Aquat Toxicol 68:325–338

    CAS  Google Scholar 

  • Dautremepuits C, Fortier M, Croisetiere S, Belhumeur P, Fournier M (2006) Modulation of juvenile brook trout (Salvelinus fontinalis) cellular immune system after Aeromonas salmonicida challenge. Vet Immunol Immunopathol 110:27–36

    CAS  Google Scholar 

  • Deane EE, Li J, Woo NYS (2001) Hormonal status and phagocytic activity in sea bream infected with vibriosis. Comp Biochem Physiol 129:687–693

    CAS  Google Scholar 

  • Elsasser MS, Roberson BS, Hetrick FM (1986) Effects of metals on the chemiluminescent response of rainbow trout (Salmo gairdneri) phagocytes. Vet Immunol Immunopathol 12:243–250

    CAS  Google Scholar 

  • Esteban MA, Meseguer J (1997) Factors influencing phagocytic response of macrophages from the sea bass (Dicentrarchus labrax L.): an ultrastructural and quantitative study. Anat Rec 248:533–541

    CAS  Google Scholar 

  • Exley C (1996) Aluminium in the brain and heart of the rainbow trout. J Fish Biol 48:706–713

    CAS  Google Scholar 

  • Farina M, Lara FS, Brandão R, Jacques R, Rocha JBT (2002) Effects of aluminium sulfate on erythropoiesis in rats. Toxicol Lett 132:131–139

    CAS  Google Scholar 

  • Fatima M, Ahmad I, Sayeed I, Athar M, Raisuddin S (2000) Pollutant-induced over-activation of phagocytes is concomitantly associated with peroxidative damage in fish tissues. Aquat Toxicol 49:243–250

    CAS  Google Scholar 

  • Fernández-Dávila ML, Razo-Estrada AC, García-Medina S, Gómez-Oliván LM, Pin҃ón-López MJ, Ibarra RG, Galar-Martínez M (2012) Aluminium-induced oxidative stress and neurotoxicity in grass carp (Cyprinidae-Ctenopharingodon idella). Ecotoxicol Environ Saf 76:87–92

    Google Scholar 

  • García-Medina S, Razo-Estrada AC, Gómez-Oliván LM, Amaya-Chávez A, Madrigal-Bujàidar E, Galar-Martínez M (2010) Aluminum-induced oxidative stress in lymphocytes of common carp (Cyprinus carpio). Fish Physiol Biochem 36:875–882

    Google Scholar 

  • García-Medina S, Razo-Estrada C, Galar-Martinez M, Cortéz-Barberena E, Gómez-Oliván LM, Álvarez-González I, Madrigal-Bujaidar E (2011) Genotoxic and cytotoxic effects induced by aluminium in the lymphocytes of the common carp (Cyprinus carpio). Comp Biochem Physiol C 153:113–118

    Google Scholar 

  • Geraudie P, Hinfray N, Gerbron M, Porcher JM, Brion F, Minier C (2011) Brain cytochrome P450 aromatase activity in roach (Rutilus rutilus): seasonal variations and impact of environmental contaminants. Aquat Toxicol 105:378–384

    CAS  Google Scholar 

  • Gjessing MC, Falk K, Weli SC, Koppang EO, Kvellestad A (2012) A sequential study of incomplete Freund’s adjuvant-induced peritonitis in Atlantic cod. Fish Shellfish Immunol 32:141–150

    CAS  Google Scholar 

  • Golub MS, Han B, Keen CL (1999) Aluminum uptake and effects on transferring mediated iron uptake in primary cultures of rat neurons, astrocytes and oligodendrocytes. Neurotoxicology 20:961–970

    CAS  Google Scholar 

  • Gonçalves AS, Páscoa I, Neves JV, Coimbra J, Vijayan MM, Rodrigues P, Wilson JM (2012) The inhibitory effect of environmental ammonia on Danio rerio LPS induced acute phase response. Dev Comp Immunol 36:279–288

    Google Scholar 

  • Guardiola FA, Cuesta A, Meseguer J, Martínez S, Martínez-Sánchez MJ, Pérez-Sirvent C, Esteban MA (2013) Accumulation, histopathology and immunotoxicological effects of waterborne cadmium on gilthead seabream (Sparus aurata). Fish Shellfish Immunol 35:792–800

    CAS  Google Scholar 

  • Guibaud G, Gauthier C (2003) Study of aluminium concentration and speciation of surface water in four catchments in Limousin region (France). J Inorg Biochem 97:16–25

    CAS  Google Scholar 

  • Han J, Han J, Dunn MA (2000) Effect of dietary aluminum on tissue nonheme iron and ferritin levels in the chick. Toxicology 142:97–109

    CAS  Google Scholar 

  • Hang BTB, Milla S, Gillardin V, Phuong NT, Kestemont P (2013) In vivo effects of Escherichia coli lipopolysaccharide on regulation of immune response and protein expression in striped catfish (Pangasianodon hypophthalmus). Fish Shellfish Immunol 34:339–347

    Google Scholar 

  • Harmon SM (2009) Effects of pollution on freshwater organisms. Water Environ Res 81:2030–2069

    CAS  Google Scholar 

  • Harris WR (1996) Binding and transport of aluminum by serum proteins. Coord Chem Rev 149:347–365

    CAS  Google Scholar 

  • HogenEsch H (2002) Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine 20:S34–S39

    CAS  Google Scholar 

  • Hu C, Liu F, Li Y (2009) Effects of aluminum intoxication on immune function in chickens. Bioinform Biomed Eng 1–4

  • INERIS (2005) Aluminium et dérivés. Institut National de l’Environnement Industriel et des Risques - Fiche de données toxicologiques et environnementales des substances chimiques

  • Israell E, Agmon-Levin N, Blank M, Shoenfeld Y (2011) Macrophagic myofaciitis a vaccine (alum) autoimmune-related disease. Clin Rev Allergy Immunol 41:163–168

    Google Scholar 

  • Jacobson KC, Arkoosh MR, Kagley AN, Clemons ER, Collier TK, Casillas E (2003) Cumulative effects of natural and anthropogenic stress on immune function and disease resistance in juvenile Chinook salmon. J Aquat Anim Health 15:1–12

    Google Scholar 

  • Janssen PAH, Lambert JGD, Goos HJT (1995) The annual ovarian cycle and the influence of pollution on vitellogenesis in the flounder, Pleuronectes flesus. J Fish Biol 47:509–523

    Google Scholar 

  • Jiao XD, Cheng S, Hu YH, Sun L (2010) Comparative study of the effects of aluminum adjuvants and Freund’s incomplete adjuvant on the immune response to an Edwardsiella tarda major antigen. Vaccine 28:1832–1837

    CAS  Google Scholar 

  • Kadar E, Salanki J, Jugdaohsingh R, Powell JJ, McCrohan CR, White KN (2001) Avoidance responses to aluminium in the freshwater bivalve Anodonta cygnaea. Aquat Toxicol 55:137–148

    CAS  Google Scholar 

  • Khangarot BS, Rathore RS, Tripathi DM (1999) Effects of chromium on humoral and cell-mediated immune responses and host resistance to disease in a freshwater catfish, Saccobranchus fossilis (Bloch). Ecotoxicol Env Saf 43:11–20

    CAS  Google Scholar 

  • Kheir-Eldin AA, Motawi TK, Gad MZ, Abd-ElGawad HM (2001) Protective effect of vitamin E, β-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Int J Biochem Cell Biol 33:475–482

    CAS  Google Scholar 

  • Kim Y, Olivi L, Cheong JH, Maertens A, Bressler JP (2007) Aluminum stimulates uptake of non-transferrin bound iron and transferring bound iron in human glial cells. Toxicol Appl Pharmacol 220:349–356

    CAS  Google Scholar 

  • Köllner B, Kotterba G (2002) Temperature dependent activation of leucocyte populations of rainbow trout, Oncorhynchus mykiss, after intraperitoneal immunization with Aeromonas salmonicida. Fish Shellfish Immunol 12:35–48

    Google Scholar 

  • Krtková J, Havelková L, Křepelová A, Fišer R, Vosolsobě S, Novotná Z, Martinec J, Schwarzerová K (2012) Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in Arabidopsis thaliana. Plant Physiol Biochem 60:88–97

    Google Scholar 

  • Kuang SY, Xiao WW, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Tang L, Zhou XQ (2012) Effects of graded levels of dietary methionine hydroxyl analogue on immune response and antioxidant status of immune organs in juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol 32:629–636

    CAS  Google Scholar 

  • Kumar N, Prabhu PAJ, Pal AK, Remya S, Aklakur M, Rana RS, Gupta S, Raman RP, Jadhao SB (2011) Anti-oxidative and immune-hematological status of Tilapia (Oreochromis mossambicus) during acute toxicity test of endosulfan. Pestic Biochem Phys 99:45–52

    CAS  Google Scholar 

  • Lankoff A, Banasik A, Duma A, Ochniak E, Lisowska H, Kuszewski T, Góźdź S, Wojcik A (2006) A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol Lett 161:27–36

    CAS  Google Scholar 

  • Mahieu S, Contini MC, Gonzales M, Millen N, Elias MM (2000) Aluminum toxicity. Hematological effects. Toxicol Lett 111:235–242

    CAS  Google Scholar 

  • Marcogliese DJ (2005) Parasites of the superorganism: are they indicators of ecosystem health? Int J Parasitol 65:705–716

    Google Scholar 

  • Marcogliese DJ, Pietrock M (2011) Combined effects of parasites and contaminants on animal health: parasites do matter. Trends Parasitol 27:123–130

    Google Scholar 

  • Marcogliese DJ, Gagnon Brambilla L, Gagné F, Gendron AD (2005) Joint effects of parasitism and pollution on oxidative stress biomarkers in yellow perch Perca flavescens. Dis Aquat Org 63:77–84

    CAS  Google Scholar 

  • Marcogliese DJ, Dautremepuits C, Gendron AD, Fournier M (2010) Interactions between parasites and pollutants in yellow perch (Perca flavescens) in the St. Lawrence River, Canada: implications for resistance and tolerance to parasites. Can J Zool 88:247–258

    CAS  Google Scholar 

  • Martin RB (1986) The chemistry of aluminum as related to biology and medicine. Clin Chem 32:1797–1806

    CAS  Google Scholar 

  • Mathieu C, Milla S, Mandiki SNM, Douxfils J, Kestemont P (2014) In vivo response of some immune and endocrine variables to LPS in Eurasian perch (Perca fluviatilis, L.) and modulation of this response by two corticosteroids, cortisol and 11-deoxycorticosterone. Comp Biochem Physiol A 167:25–34

    CAS  Google Scholar 

  • Minier C, Caltot G, Leboulanger F, Hill EM (2000) An investigation of the incidence of intersex fish in Seine-Maritime and Sussex regions. Analysis 28:801–806

    CAS  Google Scholar 

  • Monteiro DA, De Almeida JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C 143:141–149

    Google Scholar 

  • Mulvey B, Landolt M, Busch R (1995) Effects of potassium aluminium sulphate (alum) used in an Aeromonas salmonicidae bacterin in Atlantic salmon, Salmo salar. J Fish Dis 18:495–506

    CAS  Google Scholar 

  • Mustafa A, MacWilliams C, Fernandez N, Matchett K, Conboy GA, Burka JF (2000) Effects of sea lice (Lepeophtheirus salmonis Kroyer, 1837) infestation on macrophage functions in Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol 10:47–59

    CAS  Google Scholar 

  • Nagelkerke LAJ, Pannevis MC, Houlihan DF, Secombes CJ (1990) Oxygen uptake of rainbow trout Oncorhynchus mykiss phagocytes following stimulation of the respiratory burst. J Exp Biol 154:339–353

    Google Scholar 

  • Nasiadek M, Chmielnicka J (2000) Interaction of aluminum with exogenous and endogenous iron in the organism rats. Ecotoxicol Environ Saf 45:284–290

    CAS  Google Scholar 

  • Nayak P (2002) Aluminum: impacts and disease. Environ Res A 89:101–115

    CAS  Google Scholar 

  • Noia M, Domínguez B, Leiro J, Blanco-Méndez J, Luzardo-Álvarez A, Lamas J (2014) Inflammatory responses and side effects generated by several adjuvant-containing vaccines in turbot. Fish Shellfish Immunol 38:244–254

    CAS  Google Scholar 

  • Norris DO, Camp JM, Maldonado TA, Woodling JD (2000) Some aspects of hepatic function in feral brown trout, Salmo trutta, living in metal contaminated water. Comp Biochem Physiol C 127:71–78

    CAS  Google Scholar 

  • Nya EJ, Austin B (2010) Use of bacterial lipopolysaccharide (LPS) as an immunostimulant for the control of Aeromonas hydrophila infections in rainbow trout Oncorhynchus mykiss (Walbaum). J Appl Microbiol 108:686–694

    CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  Google Scholar 

  • OMS IPCS (1997) Environmental health criteria 194: aluminum. World Health Organisation, International Programme on Chemical Safety. htpp://www.inchem.org/fullist.html

  • Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol 102:379–388

    CAS  Google Scholar 

  • Pereira LB, Mazzanti CMA, Gonçalves JF, Cargnelutti D, Tabaldi LA, Becker AG, Calgaroto NS, Farias JG, Battisti V, Bohrer D, Nicoloso FT, Morsh VM, Schetinger MRC (2010) Aluminum-induced oxidative stress in cucumber. Plant Physiol Biochem 48:683–689

    CAS  Google Scholar 

  • Poléo ABS (1995) Aluminium polymerization—a mechanism of acute toxicity of aqueous aluminium to fish. Aquat Toxicol 31:347–356

    Google Scholar 

  • Reynaud S, Deschaux P (2006) The effects of polycyclic aromatic hydrocarbons on the immune system of fish. Aquat Toxicol 77:229–238

    CAS  Google Scholar 

  • Ribes D, Colomina MT, Vicens P, Domingo JL (2010) Impaired spatial learning and unaltered neurogenesis in a transgenic model of Alzheimer’s disease after oral aluminum exposure. Curr Alzheimer Res 7:401–408

    CAS  Google Scholar 

  • Romano N, Taverne-Thiele JJ, Maanen JCV, Rombout JHMW (1997) Leucocyte subpopulations in developing carp (Cyprinus carpio L.): immunocytochemical studies. Fish Shellfish Immunol 7:439–453

    Google Scholar 

  • Rougier F, Troutaud D, Ndoye A, Deschaux P (1994) Non-specific immune response of zebrafish, Brachydanio rerio (Hamilton-Buchanan) following copper and zinc exposure. Fish Shellfish Immunol 4:115–127

    Google Scholar 

  • Ruipérez F, Mujika JI, Ugalde JM, Exley C, Lopez X (2012) Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe (III) to Fe (II). J Inorg Biochem 117:118–123

    Google Scholar 

  • Sakanari JA, Moser M, Reilly CA, Yoshino TP (1984) Effects of sublethal concentrations of zinc and benzene on striped bass, Morone saxatilis (Walbaum), infected with larval Anisakis nematodes. J Fish Biol 24:553–563

    CAS  Google Scholar 

  • Sanchez-Dardon J, Voccia I, Hontela A, Chilmonczyk S, Dunier M, Boermans H, Blakely B, Fournier M (1999) Immunomodulation by heavy metals tested individually or in mixtures in rainbow trout (Oncorhynchus mykiss) exposed in vivo. Environ Toxicol Chem 18:1492–1497

    CAS  Google Scholar 

  • Schetinger MR, Bonan CD, Morsch VM, Bohrer D, Valentim LM, Rodrigues SR (1999) Effects of aluminum sulfate on delta-aminolevulinate dehydratase from kidney, brain, and liver of adult mice. Braz J Med Biol Res 32:761–766

    CAS  Google Scholar 

  • Sebai H, Sani M, Yacoubi MT, Aouani E, Ghanam-Boughanmi N, Ben-Attia M (2010) Resveratrol, a red wine polyphenol, attenuates lipopolysaccharide-induced oxidative stress in rat liver. Ecotoxicol Environ Saf 73:1078–1083

    CAS  Google Scholar 

  • Secombes CJ (1990) Isolation of salmonid macrophages and analysis of their killing activity. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, Muiswinkel WBV (eds) Techniques in fish immunology. SOS Publications, Fair Haven, pp 137–153

    Google Scholar 

  • Selvaraj V, Sampath K, Sekar V (2009) Administration of lipopolysaccharide increases specific and non-specific immune parameters and survival in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Aquaculture 286:176–183

    CAS  Google Scholar 

  • Sepulcre MP, Loper-Castejon G, Meseguer J, Mulero V (2007) The activation of gilthead seabream professional phagocytes by different PAMPs underlines the behavioural diversity of the main innate immune cells of bony fish. Mol Immunol 44:2009–2016

    CAS  Google Scholar 

  • Serrano ML, Ferrer MA, Calderón AA, Muñoz R, Barceló AR, Pedreño MA (1994) Aluminum-mediated fosetyl-Al effects on peroxidase secreted from gravepine cells. Environ Exp Bot 34:329–336

    CAS  Google Scholar 

  • Shaw CA, Petrik MS (2009) Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem 103:1555–1562

    CAS  Google Scholar 

  • Silva Junior AF, Aguiar MSS, Carvalho Junior OS, Santana LS, Franco ECS, Lima RR, De Siqueira NVM, Feio RA, Faro LRF, Gomes-Leal W (2013) Hippocampal neuronal loss, decreased GFAP immunoreactivity and cognitive impairment following experimental intoxication of rats with aluminum citrate. Brain Res 1491:23–33

    Google Scholar 

  • Sivakumar S, Khatiwada CP, Sivasubramanian J (2012) Bioaccumulations of aluminium and the effects of chelating agents on different organs of Cirrhinus mrigala. Environ Toxicol Pharmacol 34:791–800

    CAS  Google Scholar 

  • Sloof W, Van Kreijl CF, Baars AJ (1983) Relative liver weights and xenobiotic metabolizing enzymes of fish from polluted surface in the Netherlands. Aquat Toxicol 4:1–14

    Google Scholar 

  • Solem ST, Jørgensen JB, Robertsen B (1995) Stimulation of respiratory burst and phagocytic activity in Atlantic salmon (Salmo salar L.) macrophages by lipopolysaccharide. Fish Shellfish Immunol 5:475–491

    Google Scholar 

  • Sparling DW, Lowe TP, Campbell PGC (1997) Ecotoxicology of aluminium to fish and wildlife. In: Yokel RA, Golub MS (eds) Research issues in aluminum toxicity. Taylor & Francis, pp 47–58

  • Sures B (2004) Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends Parasitol 20:170–177

    CAS  Google Scholar 

  • Sures B (2006a) How parasitism and pollution affect the physiological homeostasis of aquatic hosts. J Helminthol 80:151–157

    CAS  Google Scholar 

  • Sures B, Lutz I, Kloas W (2006b) Effects of infection with Anguillicola crassus and simultaneous exposure with Cd and 3,3’,4,4’,5-pentachlorobiphenyl (PCB126) on the levels of cortisol and glucose in European eel (Anguilla anguilla). Parasitology 132:281–288

    CAS  Google Scholar 

  • Suzuki Y, Iida T (1992) Fish granulocytes in the process of inflammation. Annu Rev Fish Dis 2:149–160

    Google Scholar 

  • Swain P, Nayak SK, Nanda PK, Dash S (2008) Biological effects of bacterial lipopolysaccharide (endotoxin) in fish: a review. Fish Shellfish Immunol 25:191–201

    CAS  Google Scholar 

  • Tafalla C, Bøgwald J, Dalmo RA (2013) Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. Fish Shellfish Immunol 35:1740–1750

    CAS  Google Scholar 

  • Teles M, Mackenzie S, Boltaña S, Callol A, Tort L (2011) Gene expression and TNF-alpha profile in rainbow trout macrophages following exposures to copper and bacterial lipopolysaccharide. Fish Shellfish Immunol 30:340–346

    CAS  Google Scholar 

  • Tellez-Bañuelos MC, Santerre A, Casas-Solis J, Bravo-Cuellar A, Zaitseva G (2009) Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan. Fish Shellfish Immunol 27:105–111

    Google Scholar 

  • Teroka H (1981) Distribution of 24 elements in the internal organs of normal males and metallic workers in Japan. Arch Environ Health 36:155–165

    Google Scholar 

  • Tyler JW, Klesius PH (1994) Protection against enteric septicemia of catfish (Ictalurus punctatus) by immunization with the R-mutant, Escherichia coli (J5). Am J Vet Res 55:1256–1260

    CAS  Google Scholar 

  • Van den Brink PJ, Tarazona JV, Solomon KR, Knacher T, Van den Brink NW, Brock TCM (2005) The use of terrestrial and aquatic microcosms and mesocosms for the ecological risk assessment of veterinary medicinal products. Environ Toxicol Chem 24:820–829

    Google Scholar 

  • Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G (1994) A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol 10:415–421

    CAS  Google Scholar 

  • Verstraeten SV, Aimo L (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82:789–802

    CAS  Google Scholar 

  • Vidal Martinez VM (2007) Helminths and protozoans of aquatic organisms as bioindicators of chemical pollution. Parassitologia 49:177–184

    CAS  Google Scholar 

  • Wang H, Shen X, Xu D, Lu L (2013) Lipopolysaccharide-induced TNF-α factor in grass carp (Ctenopharyngodon idella): evidence for its involvement in antiviral innate immunity. Fish Shellfish Immunol 34:538–545

    CAS  Google Scholar 

  • Ward RJ, McCrohan CR, White KN (2006) Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifasticus leniusculus. Aquat Toxicol 77:222–228

    CAS  Google Scholar 

  • Woodburn K, Walton R, McCrohan C, White K (2011) Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus. Aquat Toxicol 105:535–542

    CAS  Google Scholar 

  • Xiang LX, Peng B, Dong WR, Yang ZF, Shao JZ (2008) Lipopolysaccharide induce apoptosis in Carassius auratus lymphocytes, a possible role in pathogenesis of bacterial infection in fish. Dev Comp Immunol 32:992–1001

    CAS  Google Scholar 

  • Yousef MI (2004) Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicology 199:47–57

    CAS  Google Scholar 

  • Zatta P, Dalla Via L, Di Noto V (2003) Binding studies on aluminum (III)-albumin interaction. Arch Biochem Biophys 417:59–64

    CAS  Google Scholar 

  • Zelikoff JT, Bowser D, Squibbs KS, Frenkel K (1995) Immunotoxicity of low level cadmium exposure in fish: an alternative animal model for immunotoxicological studies. J Toxicol Environ Health 45:235–248

    CAS  Google Scholar 

  • Zhang J, Shen H, Wang X, Wu J, Xue Y (2004) Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55:167–174

    CAS  Google Scholar 

  • Zhu YZ, Hu CW, Li XW, Shao B, Sun H, Zhao HS, Li YF (2012a) Suppressive effects of aluminum trichloride on the T lymphocyte immune function of rats. Food Chem Toxicol 50:532–535

    CAS  Google Scholar 

  • Zhu Y, Li X, Chen C, Wang F, Li J, Hu C, Li Y, Miao L (2012b) Effects of aluminum trichloride on the trace elements and cytokines in spleen of rats. Food Chem Toxicol 50:2911–2915

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank V. Maes for valuable help during biological sample collection. This study was made possible, thanks to the financial support of the Post-Grenelle Program 190 (DEVIL program) of the French Ministry for Environment. The study was also financially supported by the European Commission (FEDER) and the Champagne-Ardenne region (RISKTOX Program).

The authors are also grateful to Annie Buchwalter for improving English language.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jolly.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jolly, S., Jaffal, A., Delahaut, L. et al. Effects of aluminium and bacterial lipopolysaccharide on oxidative stress and immune parameters in roach, Rutilus rutilus L.. Environ Sci Pollut Res 21, 13103–13117 (2014). https://doi.org/10.1007/s11356-014-3227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3227-7

Keywords

Navigation