Skip to main content
Log in

Removal of selected pharmaceuticals from aqueous solution using magnetic chitosan: sorption behavior and mechanism

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A novel-modified magnetic chitosan adsorbent was used to remove selected pharmaceuticals, i.e., diclofenac (DCF) and clofibric acid (CA) and carbamazepine (CBZ), from aqueous solutions. The characterization of magnetic chitosan was achieved by scanning electron and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and nitrogen sorption analysis. The magnetic chitosan had effective sorption affinity for DCF and CA but no sorption of CBZ was observed. The sorption capacities of CA and DCF in the individual solutions were 191.2 and 57.5 mg/g, respectively. While in mixed solution, DCF showed higher sorption affinity. Sorption kinetics indicated a quick equilibrium reached within 2 min. Lower solution pH values were found to be advantageous for the adsorption process. The sorption efficacy of CA declined significantly with increasing inorganic salt concentration. However, sorption performance of DCF was stable under different ionic strength conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alkhamis K, Salem M, Khanfar M (2008) The sorption of ketotifen fumarate by chitosan. AAPS PharmSciTech 9(3):866–869. doi:10.1208/s12249-008-9123-z

    Article  CAS  Google Scholar 

  • Bagin V (1967) The chemical remanent magnetization at temperature transitions of lepidocrocite and goethite. Izv Akad Nauk USSR, Fiz Zem 2:104–108

    Google Scholar 

  • Basta EZ (1959) Some mineralogical relationships in the system Fe 2 O 3-Fe 3 O 4 and the composition of titanomaghemite. Econ Geol 54(4):698–719

    Article  CAS  Google Scholar 

  • Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43(3):597–603. doi:10.1021/Es801845a

    Article  CAS  Google Scholar 

  • Beppu MM, Arruda EJ, Vieira RS, Santos NN (2004) Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. J Membr Sci 240(1–2):227–235. doi:10.1016/j.memsci.2004.04.025

    Article  CAS  Google Scholar 

  • Bui TX, Choi H (2009) Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J Hazard Mater 168(2–3):602–608. doi:10.1016/j.jhazmat.2009.02.072

    Article  CAS  Google Scholar 

  • Chai K, Ji H (2012) Dual functional adsorption of benzoic acid from wastewater by biological-based chitosan grafted β-cyclodextrin. Chem Eng J 203:309–318. doi:10.1016/j.cej.2012.07.050

    Article  CAS  Google Scholar 

  • Chang Y-C, Chang S-W, Chen D-H (2006) Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. React Funct Polym 66(3):335–341. doi:10.1016/j.reactfunctpolym.2005.08.006

    Article  CAS  Google Scholar 

  • Colombo U, Gazzarrini F, Lanzavecchia G, Sironi G (1965) Magnetite oxidation: a proposed mechanism. Science 147(3661):1033

    Article  CAS  Google Scholar 

  • Feitknecht W, Lehmann H (1959) Über die Oxydation von Magnetit zu γ‐Fe2O3. Vorläufige Mitt Helv Chim Acta 42(6):2035–2039

    Article  CAS  Google Scholar 

  • Ferrari B, Paxeus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac (vol 55, pg 359, 2003). Ecotoxicol Environ Safe 56(3):450. doi:10.1016/S0147-6513(03)00111-8

    Article  CAS  Google Scholar 

  • Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind Eng Chem Res 37(4):1454–1463. doi:10.1021/ie9703954

    Article  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36(2):357–393

    Article  Google Scholar 

  • Hirano S, Seino H, Akiyama Y, Nonaka I (1990) Chitosan: a biocompatible material for oral and intravenous administration. Progress in Biomedical Polymers. Plenum Press, New York, pp 283–290

  • Jansson-Charrier M, Guibal E, Roussy J, Delanghe B, Le Cloirec P (1996) Vanadium (IV) sorption by chitosan: kinetics and equilibrium. Water Res 30(2):465–475

    Article  CAS  Google Scholar 

  • Jjemba PK (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Safe 63(1):113–130. doi:10.1016/j.ecoenv.2004.11.011

    Article  CAS  Google Scholar 

  • Juang R-S, Shao H-J (2002) A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res 36(12):2999–3008

    Article  CAS  Google Scholar 

  • Kyzas GZ, Kostoglou M, Lazaridis NK, Lambropoulou DA, Bikiaris DN (2013) Environmental friendly technology for the removal of pharmaceutical contaminants from wastewaters using modified chitosan adsorbents. Chem Eng J 222:248–258. doi:10.1016/j.cej.2013.02.048

    Article  CAS  Google Scholar 

  • Li GY, Jiang YR, Huang KL, Ding P, Chen J (2008) Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. J Alloy Compd 466(1–2):451–456. doi:10.1016/j.jallcom.2007.11.100

    Article  CAS  Google Scholar 

  • Mak S-Y, Chen D-H (2004) Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pigments 61(1):93–98. doi:10.1016/j.dyepig.2003.10.008

    Article  CAS  Google Scholar 

  • Martucci A, Pasti L, Marchetti N, Cavazzini A, Dondi F, Alberti A (2012) Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites. Microporous Mesoporous Mater 148(1):174–183. doi:10.1016/j.micromeso.2011.07.009

    Article  CAS  Google Scholar 

  • Mestre AS, Pires J, Nogueira JMF, Carvalho AP (2007) Activated carbons for the adsorption of ibuprofen. Carbon 45(10):1979–1988. doi:10.1016/j.carbon.2007.06.005

    Article  CAS  Google Scholar 

  • Metcalfe CD, Koenig BG, Bennie DT, Servos M, Ternes TA, Hirsch R (2003) Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environ Toxicol Chem 22(12):2872–2880

    Article  CAS  Google Scholar 

  • Navarro R, Guzmán J, Saucedo I, Revilla J, Guibal E (2003) Recovery of metal ions by chitosan: sorption mechanisms and influence of metal speciation. Macromol Biosci 3(10):552–561. doi:10.1002/mabi.200300013

    Article  CAS  Google Scholar 

  • Ng JCY, Cheung WH, McKay G (2002) Equilibrium studies of the sorption of Cu(II) ions onto chitosan. J Colloid Interface Sci 255(1):64–74. doi:10.1006/jcis.2002.8664

    Article  CAS  Google Scholar 

  • Quinn B, Gagne F, Blaise C (2008) An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sci Total Environ 389(2–3):306–314. doi:10.1016/j.scitotenv.2007.08.038

    Article  CAS  Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  Google Scholar 

  • Swaddle TW, Oltmann P (1980) Kinetics of the magnetitemaghemite-hematite transformation, with special reference to hydrothermal systems. Canadian Journal of Chemistry 58(17):1763–1772

  • Taylor R, Schwertmann U (1974) Maghemite in soils and its origin. Clay Miner 10(4):219–312

    Article  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    Article  CAS  Google Scholar 

  • Tixier C, Singer HP, Oellers S, Muller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37(6):1061–1068. doi:10.1021/Es025834r

    Article  CAS  Google Scholar 

  • Vulliet E, Cren-Olive C, Grenier-Loustalot MF (2011) Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environ Chem Lett 9(1):103–114. doi:10.1007/s10311-009-0253-7

    Article  CAS  Google Scholar 

  • Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Process Biochem 39(6):695–704

    Article  Google Scholar 

  • Wydro P, Krajewska B, Ha̧c-Wydro K (2007) Chitosan as a lipid binder: a Langmuir monolayer study of chitosan-lipid interactions. Biomacromolecules 8(8):2611–2617. doi:10.1021/bm700453x

    Article  CAS  Google Scholar 

  • Zhang Y-L, Zhang J, Dai C-M, Zhou X-F, Liu S-G (2013) Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydr Polym 97(2):809–816. doi:10.1016/j.carbpol.2013.05.072

    Article  CAS  Google Scholar 

  • Zhou XF, Dai CM, Zhang YL, Surampalli R, Zhang T (2011) A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China. Environ Monit Assess 173(1):45–53. doi:10.1007/s10661-010-1369-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is financed by Natural Science Foundation of China (21246001, 51138009, 41101480) and the National Key Technologies R&D Program of China (no. 2012BAJ25B02, 2012BAJ25B04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaomeng Dai or Xuefei Zhou.

Additional information

Responsible editor: Roland Kallenborn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shen, Z., Dai, C. et al. Removal of selected pharmaceuticals from aqueous solution using magnetic chitosan: sorption behavior and mechanism. Environ Sci Pollut Res 21, 12780–12789 (2014). https://doi.org/10.1007/s11356-014-3212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3212-1

Keywords

Navigation