Skip to main content
Log in

Analyzing sediment dissolved oxygen based on microprofile modeling

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sediment plays a key role in controlling the oxygen demand of aquatic systems. The reaction rate, penetration depth, and flux across the sediment–water interface (SWI) are important factors in sediment oxygen consumption. However, there were few methods to collect these data until recently. In this study, methods were developed to simulate the oxygen microprofile and calculate the sediment oxygen consumption rate, oxygen penetration depth, and oxygen flux across the SWI. We constructed a sediment oxygen measuring system using an oxygen microelectrode and a control device. The simulation equations were derived from both zero and first-order kinetic models, while the penetration depth and the oxygen flux were calculated from the simulation results. The method was tested on four prepared sediment samples. Decreases in dissolved oxygen in surface sediment were clearly detected by the microelectrode. The modeled data were a good fit for the observed data (R 2 > 0.95), and zero-order kinetics were more suitable than first-order kinetics. The values for penetration depth (1.3–3.9 mm) and oxygen fluxes (0.061–0.114 mg/cm2/day) calculated by our methods are comparable with those from other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alabaster JS, Lloyd R (1982) Water quality criteria for fresh water fish. Butterworth Scientific, London

    Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach, vol 1. Princeton University, Princeton

    Google Scholar 

  • Beutel MW (2001) Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada. Hydrobiologia 466(1–3):107–117

    Article  CAS  Google Scholar 

  • Beutel MW (2003) Hypolimnetic anoxia and sediment oxygen demand in California drinking water reservoirs. Lake Reserv Manag 19(3):208–221

    Article  Google Scholar 

  • Bouldin DR (1968) Models for describing the diffusion of oxygen and other mobile constituents across the mud-water interface. J Ecol 56(1):77–87

    Article  Google Scholar 

  • Bowman GT, Delfino JJ (1980) Sediment oxygen-demand techniques—a review and comparison of laboratory and in situ systems. Water Res 14(5):491–499

    Article  CAS  Google Scholar 

  • Brady DC, Testa JM, Di Toro DM, Boynton WR, Kemp WM (2013) Sediment flux modeling: calibration and application for coastal systems. Estuar Coast Shelf Sci 117:107–124

    Article  CAS  Google Scholar 

  • Brafield A (1964) The oxygen content of interstitial water in sandy shores. J Anim Ecol 33(1):97–116

    Article  Google Scholar 

  • Brendel PJ, Luther GWIII (1995) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S (-II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29(3):751–761

    Article  CAS  Google Scholar 

  • Bryant LD, McGinnis DF, Lorrai C, Brand A, Little JC, Wüest A (2010) Evaluating oxygen fluxes using microprofiles from both sides of the sediment-water interface. Limnol Oceanogr-Meth 8:610–627

    Article  CAS  Google Scholar 

  • Cai W-J, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52(2):123–131

    Article  CAS  Google Scholar 

  • Cai WJ, Luther GW, Cornwell JC, Giblin AE (2010) Carbon cycling and the coupling between proton and electron transfer reactions in aquatic sediments in Lake Champlain. Aquat Geochem 16(3):421–446

    Article  CAS  Google Scholar 

  • Di Toro DM, Connolly JP (1980) Mathematical models of water quality in large Lakes Part 2: Lake Erie. USEPA report: EPA-600/3-80-065

  • Edwards WJ, Conroy JD, Culver DA (2005) Hypolimnetic oxygen depletion dynamics in the central basin of Lake Erie. J Great Lakes Res 31(S2):262–271

    Article  CAS  Google Scholar 

  • Gantzer PA, Bryant LD, Little JC (2009) Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs. Water Res 43(6):1700–1710

    Article  CAS  Google Scholar 

  • Hanes N, Irvine RL (1966) Oxygen uptake rates of benthal systems by a new technique. Proceedings of the 21st Industrial Waste Conference

  • Hargrad BT (1972) Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol Oceanogr 17(4):583–597

    Article  Google Scholar 

  • Hebert AB, Morse JW, Eldridge PM (2007) Small-scale heterogeneity in the geochemistry of seagrass vegetated and non-vegetated estuarine sediments: causes and consequences. Aquat Geochem 13(1):19–39

    Article  CAS  Google Scholar 

  • Henriksen K (1980) Measurement of in situ rates of nitrification in sediment. Microb Ecol 6(4):329–337

    Article  CAS  Google Scholar 

  • Higashino M (2011) Oxygen consumption by a sediment bed for stagnant water: comparison to SOD with fluid flow. Water Res 45(15):4381–4389

    Article  CAS  Google Scholar 

  • Holmer M (1999) The effect of oxygen depletion on anaerobic organic matter degradation in marine sediments. Estuar Coast Shelf Sci 48(3):383–390

    Article  Google Scholar 

  • House WA (2003) Factors influencing the extent and development of the oxic zone in sediments. Biogeochemistry 63(3):317–334

    Article  CAS  Google Scholar 

  • Jorgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30(1):111–122

    Article  Google Scholar 

  • Kemp W, Sampou P, Caffrey J, Mayer M, Henriksen K, Boynton W (1990) Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnol Oceanogr 35(7):1545–1563

    Article  CAS  Google Scholar 

  • Louati H, Said OB, Got P, Soltani A, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013) Microbial community responses to bioremediation treatments for the mitigation of low-dose anthracene in marine coastal sediments of Bizerte lagoon (Tunisia). Environ Sci Pollut Res 20(1):300–310

    Article  CAS  Google Scholar 

  • Luther GW III, Glazer BT, Ma S, Trouwborst RE, Moore TS, Metzger E, Kraiya C, Waite TJ, Druschel G, Sundby B (2008) Use of voltammetric solid-state (micro) electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar Chem 108(3–4):221–235

    Article  CAS  Google Scholar 

  • Martin N, McEachern P, Yu T, Zhu DZ (2013) Model development for prediction and mitigation of dissolved oxygen sags in the Athabasca River, Canada. Sci Total Environ 443:403–412

    Article  CAS  Google Scholar 

  • Meysman FJ, Galaktionov O, Glud RN, Middelburg JJ (2010) Oxygen penetration around burrows and roots in aquatic sediments. J Mar Res 68(2):309–336

    Article  CAS  Google Scholar 

  • Rabouille C, Gaillard JF (1991) A coupled model representing the deep-sea organic carbon mineralization and oxygen consumption in surficial sediments. J Geophys Res 96(C2):2761–2776

    Article  Google Scholar 

  • Revsbech NP, Jorgensen BB, Blackburn TH, Cohen Y (1983) Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial Mat. Limnol Oceanogr 28(6):1062–1074

    Article  Google Scholar 

  • Santschi P, Höhener P, Benoit G, Buchholtz-ten Brink M (1990) Chemical processes at the sediment-water interface. Mar Chem 30:269–315

    Article  CAS  Google Scholar 

  • Stenstrom MK, Poduska RA (1980) The effect of dissolved oxygen concentration on nitrification. Water Res 14(6):643–649

    Article  CAS  Google Scholar 

  • Sundby B, Anderson LG, Hall POJ, Iverfeldt Å, van der Loeff MMR, Westerlund SFG (1986) The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim Cosmochim Ac 50(6):1281–1288

    Article  CAS  Google Scholar 

  • Sweerts JPRA, Bar-Gilissen MJ, Cornelese AA, Cappenberg TE (1991) Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands). Limnol Oceanogr 36(6):1124–1133

    Article  CAS  Google Scholar 

  • Torres E, Ayora C, Canovas CR, Garcia-Robledo E, Galvan L, Sarmiento AM (2013) Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage. Sci Total Environ 461:416–429

    Article  Google Scholar 

  • Wang W (1980) Fractionation of sediment oxygen demand. Water Res 14(6):603–612

    Article  CAS  Google Scholar 

  • Wang W (1981) Kinetics of sediment oxygen demand. Water Res 15(4):475–482

    Article  CAS  Google Scholar 

  • Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol Oceanogr 29(2):236–249

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic, San Diego

    Google Scholar 

  • Xu KM, Zhang LP, Zou WB (2009) Microelectrode study of oxygen uptake and organic matter decomposition in the sediments of Xiamen Western Bay. Estuar Coast 32(3):425–435

    Article  CAS  Google Scholar 

  • Zahraeifard V, Deng ZQ (2012) Modeling sediment resuspension-induced DO variation in fine-grained streams. Sci Total Environ 441:176–181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research & Development on Suitable Key Technologies of the Village Environmental Monitoring (no. 2012BAJ24B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqing Shan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Shan, B., Zhang, H. et al. Analyzing sediment dissolved oxygen based on microprofile modeling. Environ Sci Pollut Res 21, 10320–10328 (2014). https://doi.org/10.1007/s11356-014-2875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2875-y

Keywords

Navigation