Skip to main content
Log in

TiO2 sol-gel for formaldehyde photodegradation using polymeric support: photocatalysis efficiency versus material stability

  • Advanced Oxidation Technologies: Advances and Challenges in IberoAmerican Countries
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Photocatalysts supported on polymers are not frequently used in heterogeneous photocatalysis because of problems such as wettability and stability that affect photocatalysis conditions. In this work, we used polypropylene as support for TiO2 sol-gel to evaluate its stability and efficiency under UV radiation. We also tested the effect of the thermo-pressing PP/TiO2 system on the photocatalytic efficiency and stability under UV radiation. The films were characterized by scanning electron microscopy (SEM), UV-Vis spectroscopy and X-ray diffraction (XRD). The SEM micrographs showed that the films of TiO2 sol-gel onto PP has approximately 1.0-μm thick and regular surface and the generation of polypropylene nanowires on hot-pressed samples. XRD showed the formation of TiO2 anatase on the surface of the films made by dip-coating. All photocatalysts were tested in decontaminating air-containing gaseous formaldehyde (70 ppmv) presenting degradation of the target compound to the limit of detection. The photocatalysts showed no deactivation during the entire period tested (30 h), and its reuse after washing showed better photocatalytic performance than on first use. The photocatalyst showed the best results were tested for 360 h with no observed deactivation. Aging studies showed that the film of TiO2 causes different effects on the photostability of composites, with stabilizing effect when exposed to most energetic UVC radiation (λmax = 254 nm) and degradative effects when exposed to UVA radiation (λmax = 365 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen NS, Edge M (1992) Fundamentals of polymer degradation and stabilization. Elsevier Applied Science, New York

    Google Scholar 

  • Agnelli JAM, Chinelatto MA (1992) Degradação de polipropileno: aspectos teóricos e recentes avanços em sua estabilização. Polímeros 2:27–31

    Google Scholar 

  • Bennani J, Dillert R, Gesing TM, Bahnemann D (2009) Physical properties, stability, and photocatalytic activity of transparent TiO2/SiO2 films. Sep Purif Technol 67:173–179. doi:10.1016/j.seppur.2009.03.019

    Article  CAS  Google Scholar 

  • Carlsson DJ, Wiles DM (1969) Photodegradation of polypropylene films. 3: photolysis of polypropylene hydroperoxides. Macromolecules 2:597–606

    Article  CAS  Google Scholar 

  • Chen F, Yang X, Wu Q (2009) Photocatalytic oxidation of Escherichia coli, Aspergillus niger, and formaldehyde under different ultraviolet irradiation conditions. Environ Sci Technol 43:4606–4611. doi:10.1021/es900505h

    Article  CAS  Google Scholar 

  • Chiu C-W, Lin C-A, Hong P-D (2001) Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. J Polym Res 18:367–372. doi:10.1007/s10965-010-9426-0

    Article  Google Scholar 

  • De Paoli MA (2009) Degradação e Estabilização de Polímeros. Artliber, São Paulo

    Google Scholar 

  • El-Dessouky MH, Lawrence CA (2011) Nanoparticles dispersion in processing functionalised PP/TiO2 nanocomposites: distribution and properties. J Nanoparticle Res 13:1115–1124. doi:10.1007/s11051-010-0100-6

    Article  CAS  Google Scholar 

  • Fechine GJM, Fernandes LL, Freitas CA, Demarquette NR (2012) Estudo do Efeito do Tipo de Polipropileno na Fotodegradação da Blenda Polipropileno/Poliestireno de Alto Impacto. Polímeros 22:61–68. doi:10.1590/S0104-14282012005000013

    Article  Google Scholar 

  • Hamid SH (2000) Handbook of polymer degradation. CRC, New York

    Google Scholar 

  • Hewer TLR, Suarez S, Coronado JM, Portela R, Avila P, Sanchez B (2009) Hybrid photocatalysts for the degradation of trichloroethylene in air. Catal Today 143:302–308. doi:10.1016/j.cattod.2009.02.001

    Article  CAS  Google Scholar 

  • Hurum DC, Gray KA, Rajh T, Thurnauer MC (2004) Photoinitiated reactions of 2,4,6 TCP on Degussa P25 formulation TiO2: wavelength-sensitive decomposition. J Phys Chem B 108:16483–16487. doi:10.1021/jp047097m

    Article  CAS  Google Scholar 

  • Jeong J, Sekiguchi K, Sakamoto K (2004) Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources. Chemosphere 57:663–671. doi:10.1016/j.chemosphere.2004.05.037

    Article  CAS  Google Scholar 

  • Kasanen J, Suvanto M, Pakkanen TT (2009) Self-cleaning, titanium dioxide based, multilayer coating fabricated on polymer and glass surfaces. J Appl Polym Sci 111:2597–2606. doi:10.1002/app.29295

    Article  CAS  Google Scholar 

  • Kim D-J, Pham H-C, Park D-W, Kim K-S (2011) Preparation of TiO2 thin films on polypropylene beads by a rotating PCVD process and its application to organic pollutant removal. Chem Eng J 167:308–313. doi:10.1016/j.cej.2010.12.069

    Article  CAS  Google Scholar 

  • Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC (2001) The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252. doi:10.1038/sj.jea.7500165

    Article  CAS  Google Scholar 

  • Kwon H-J, Lee Y-W, Kim H-S, Zhoh C-K, Park K-W (2013) One-dimensional TiO2 nanostructures with improved UV-blocking properties. Mater Lett 93:175–178. doi:10.1016/j.matlet.2012.11.130

    Article  CAS  Google Scholar 

  • Lee CM, Kim YS, Nagjyoti PC, Park W, Kim KY (2011) Atmospheric concentration of ammonia, nitrogen dioxide, nitric acid, and sulfur dioxide by passive method within Osaka prefecture and their emission inventory. Water Air Soil Pollut 215:229–237. doi:10.1007/s11270-010-0472-3

    Article  Google Scholar 

  • Matsuzawa S, Maneerat C, Hayata Y, Hirakawa T, Negishi T, Sano T (2008) Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase. Appl Catal B Environ 83:39–45. doi:10.1016/j.apcatb.2008.01.036

    Article  CAS  Google Scholar 

  • Obee T, Brown RT (1995) TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1–3 butadiene. Environ Sci Technol 29:1223–1231. doi:10.1021/es00005a013

    Article  CAS  Google Scholar 

  • Ohtani B, Adzuma S, Miyadzu H, Nishimoto S, Kagiya T (1989) Photocatalytic degradation of polypropylene film by dispersed titanium dioxide particles. Polym Degrad Stab 23:271–278

    Article  CAS  Google Scholar 

  • Paz Y (2010) Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl Catal B Environ 99:448–460. doi:10.1016/j.apcatb.2010.05.011

    Article  CAS  Google Scholar 

  • Portela R, Sánchez B, Coronado JM, Candal R, Suárez S (2007) Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal. Catal Today 129:223–230. doi:10.1016/j.cattod.2007.08.005

    Article  CAS  Google Scholar 

  • Puma GL, Puddu V, Tsang HK, Gora A, Toepfer B (2010) Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: photon absorption, quantum yields and rate constants independent of photon absorption. Appl Catal B Environ 99:388–397. doi:10.1016/j.apcatb.2010.05.015

    Article  Google Scholar 

  • Rabello MS, White JR (1997a) Crystallization and melting behaviour of photodegraded polypropylene-1. Chemi-crystallization. Polymer 38:6379–6387. doi:10.1016/S0032-3861(97)00213-9

    Article  CAS  Google Scholar 

  • Rabello MS, White JR (1997b) The role of physical structure and morphology in the photodegradation behaviour of polypropylene. Polym Degrad Stab 56:55–73. doi:10.1016/S0141-3910(96)00202-9

    Article  CAS  Google Scholar 

  • Sánchez B, Coronado JM, Candal R, Portela R, Tejedor I, Anderson MA, Tompkins D, Lee T (2006) Preparation of TiO2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase. Appl Catal B Environ 66:295–301. doi:10.1016/j.apcatb.2006.03.021

    Article  Google Scholar 

  • Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37:74–765. doi:10.1016/j.envint.2011.01.005

    Article  Google Scholar 

  • Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A Gen 389:1–8. doi:10.1016/j.apcata.2010.08.053

    Article  CAS  Google Scholar 

  • Shie J-L, Lee C-H, Chiou C-S, Chang T-C, Chang CC, Chang CY (2008) Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. J Hazard Mater 155:164–172. doi:10.1016/j.jhazmat.2007.11.043

    Article  CAS  Google Scholar 

  • Shiraishi F, Ikeda S, Kamikariya N (2009) Photocatalytic decompositions of gaseous HCHO over thin films of anatase titanium oxide converted from amorphous in a heated air and in an aqueous solution of hydrogen peroxide. Chem Eng J 148:234–241. doi:10.1016/j.cej.2008.08.021

    Article  CAS  Google Scholar 

  • Siqueira CYS, Gioda A, Carneiro FP, Ramos MCKV, Aquino Neto FR (2011) Distribution of indoor air pollutants in downtown Rio de Janeiro, Brazil. J Braz Chem Soc 22:2127–2138. doi:10.1590/S0103-50532011001100015

    Article  CAS  Google Scholar 

  • Suciu RC, Indrea E, Silipas TD, Dreve S, Rosu MC, Popescu V, Popescu G, Nascu HI (2009) TiO2 thin films prepared by sol–gel method. J Phys Conf Ser 182:012080. doi:10.1088/1742-6596/182/1/012080

    Article  Google Scholar 

  • Tavares CJ, Marques SM, Lanceros-Méndez S, Sencadas V, Teixeira V, Carneiro JO, Martins AJ, Fernandes AJ (2008) Strain analysis of photocatalytic TiO2 thin films on polymer substrates. Thin Solid Films 516:1434–1438. doi:10.1016/j.tsf.2007.03.134

    Article  CAS  Google Scholar 

  • Tseng TK, Lin YS, Chen YJ, Chu H (2010) A review of photocatalysts prepared by sol–gel method for VOCs removal. Int J Mol Sci 11:2336–2361. doi:10.3390/ijms11062336

    Article  CAS  Google Scholar 

  • Waldman WR, De Paoli MA (2008) Photodegradation of polypropylene/polystyrene blends: styrene butadiene styrene compatibilisation effect. Polym Degrad Stab 93:273–280. doi:10.1016/j.Polymdegradstab.2007.09.003

    Google Scholar 

  • Xu Q, Anderson MA (1994) Sol–gel route to synthesis of microporous ceramic membranes: preparation and characterization of microporous TiO2 and ZnO2 xerogels. J Am Ceram Soc 77:1939–1945. doi:10.1111/j.1151-2916.1994.tb07074.x

    Article  CAS  Google Scholar 

  • Yu H, Zhang K, Rossi C (2007) Experimental study of the photocatalytic degradation of formaldehyde in indoor air using a nano-particulate titanium dioxide photocatalyst. Indoor Built Environ 16:529–537. doi:10.1177/1420326X07083513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge CNPq and FAPERJ for the financial support and Prof. Ricardo Papaleo for the help on the discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Canela.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curcio, M.S., Oliveira, M.P., Waldman, W.R. et al. TiO2 sol-gel for formaldehyde photodegradation using polymeric support: photocatalysis efficiency versus material stability. Environ Sci Pollut Res 22, 800–809 (2015). https://doi.org/10.1007/s11356-014-2683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2683-4

Keyword

Navigation