Skip to main content

Advertisement

Log in

Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain

  • Biodegradability assessment of organic substances and polymers
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The increasing usage and the persistence of polyester polyurethane (PU) generate significant sources of environmental pollution. The effective and environmental friendly bioremediation techniques for this refractory waste are in high demand. In this study, three novel PU degrading bacteria were isolated from farm soils and activated sludge. Based upon 16S ribosomal RNA gene sequence blast, their identities were determined. Particularly robust activity was observed in Pseudomonas putida; it spent 4 days to degrade 92 % of Impranil DLNTM for supporting its growth. The optimum temperature and pH for DLN removal by P. putida were 25 °C and 8.4, respectively. The degradation and transformation of DLN investigated by Fourier transformed infrared spectroscopy show the decrease in ester functional group and the emergence of amide group. The polyurethanolytic activities were both presented in the extracellular fraction and in the cytosol. Esterase activity was detected in the cell lysate. A 45-kDa protein bearing polyurethanolytic activity was also detected in the extracellular medium. This study presented high PU degrading activity of P. putida and demonstrated its responsible enzymes during the PU degradation process, which could be applied in the bioremediation and management of plastic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62–67

    CAS  Google Scholar 

  • Allen AB, Hilliard NP, Howard GT (1999) Purification and characterization of a soluble polyurethane degrading enzyme from Comamonas acidovorans. Int Biodeterior Biodegrad 43:37–41

    Article  CAS  Google Scholar 

  • Chang P, Tsai W-S, Tsai C-L, Tseng M-J (2004) Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem Biophys Res Commun 319:1017–1025

    Article  CAS  Google Scholar 

  • ElSayed A, Mahmoud WM, Davis EM, Coughlin RW (1996) Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria. Int Biodeterior Biodegrad 37:69–79

    Article  Google Scholar 

  • Fortner JD, Zhang C, Spain JC, Hughes JB (2003) Soil column evaluation of factors controlling biodegradation of DNT in the vadose zone. Environ Sci Technol 37:3382–3391

    Article  CAS  Google Scholar 

  • Gokulakumar B, Narayanaswamy R (2008) Fourier transform-infrared spectra (FT-IR) analysis of root rot disease in sesame (Sesamum indicum). Romanian J Biophys 18:217–223

    CAS  Google Scholar 

  • Guillén MD, Cabo N (2000) Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. J Sci Food Agric 80:2028–2036

    Article  Google Scholar 

  • Howard GT (2011) Microbial biodegradation of polyurethane. In: Fainleib A, Grigoryeva O (eds) Recent developments in polymer recycling. Kerala, India, Research Signpost, pp 215–238

    Google Scholar 

  • Howard GT, Blake RC (1998) Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. Int Biodeterior Biodegrad 42:213–220

    Article  CAS  Google Scholar 

  • Howard GT, Ruiz C, Newton NP (1999) Growth of Pseudomonas chlororaphis on a polyester-polyurethane and the purification and characterization of a polyurethanase-esterase enzyme. Int Biodeterior Biodegrad 43:7–12

    Article  CAS  Google Scholar 

  • Howard GT, Crother B, Vicknair J (2001) Cloning, nucleotide sequencing and characterization of a polyurethanase gene (pueB) from Pseudomonas chlororaphis. Int Biodeterior Biodegrad 47:141–149

    Article  CAS  Google Scholar 

  • Howard GT, Norton WN, Burks T (2012) Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation 23:561–573

    Article  CAS  Google Scholar 

  • Hudcova T, Halecky M, Kozliak E, Stiborova M, Paca J (2011) Aerobic degradation of 2,4-dinitrotoluene by individual bacterial strains and defined mixed population in submerged cultures. J Hazard Mater 192:605–613

    Article  CAS  Google Scholar 

  • Khanam N, Mikoryak C, Draper RK, Balkus KJ Jr (2007) Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomater 3:1050–1059

    Article  CAS  Google Scholar 

  • Li Y, Li J, Wang C, Wang P (2010) Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresour Technol 101:6740–6744

    Article  CAS  Google Scholar 

  • Malghani S, Chatterjee N, Yu HX, Luo ZJ (2009) Isolation and identification of profenofos degrading bacteria. Braz J Microbiol 40:893–900

    Article  CAS  Google Scholar 

  • Mordocco A, Kuek C, Jenkins R (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme Microb Technol 25:530–536

    Article  CAS  Google Scholar 

  • Mukherjee K, Tribedi P, Chowdhury A, Ray T, Joardar A, Giri S, Sil AK (2011) Isolation of a Pseudomonas aeruginosa strain from soil that can degrade polyurethane diol. Biodegradation 22:377–388

    Article  CAS  Google Scholar 

  • NakajimaKambe T, Onuma F, Akutsu Y, Nakahara T (1997) Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans strain TB-35. J Ferment Bioeng 83:456–460

    Article  CAS  Google Scholar 

  • Nomura N, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T (1998) Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. J Ferment Bioeng 86:339–345

    Article  CAS  Google Scholar 

  • Oceguera-Cervantes A, Carrillo-Garcia A, Lopez N, Bolanos-Nunez S, Cruz-Gomez MJ, Wacher C, Loza-Tavera H (2007) Characterization of the polyurethanolytic activity of two Alicycliphilus sp strains able to degrade polyurethane and N-methylpyrrolidone. Appl Environ Microbiol 73:6214–6223

    Article  CAS  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490

    Article  CAS  Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D et al (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  CAS  Google Scholar 

  • Shah Z, Hasan F, Krumholz L, Aktas DF, Shah AA (2013) Degradation of polyester polyurethane by newly isolated Pseudomonas aeruginosa strain MZA-85 and analysis of degradation products by GC-MS (vol 77, pg 114, 2013). Int Biodeterior Biodegrad 79:105–105

    Article  Google Scholar 

  • Sohn SB, Kim TY, Park JM, Lee SY (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750

    Article  CAS  Google Scholar 

  • Stern RV, Howard GT (2000) The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiol Lett 185:163–168

    Article  CAS  Google Scholar 

  • Vega RE, Main T, Howard GT (1999) Cloning and expression in Escherichia coli of a polyurethane-degrading enzyme from Pseudomonas fluorescens. Int Biodeterior Biodegrad 43:49–55

    Article  CAS  Google Scholar 

  • Wales DS, Sagar BF (1988) Mechanistic aspects of polyurethane biodeterioration. In: Houghton DR, Smith RN, Eggins HOW (eds) Biodeterioration 7. Springer, Netherlands, pp 351–358

    Chapter  Google Scholar 

  • Wang SN, Liu Z, Tang HZ, Meng J, Xu P (2007) Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology 153:1556–1565

    Article  CAS  Google Scholar 

  • Wu J, Jung B-G, Kim K-S, Lee Y-C, Sung N-C (2009) Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. J Environ Sci 21:960–964

    Article  CAS  Google Scholar 

  • Zachinyaev YV, Miroshnichenko II, Zachinyaeva AV (2009) Microbial degradation of polyurethane. Russ J Appl Chem 82:1321–1323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Bayer Material Science for offering free sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-hsin Shih.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 750 kb)

Fig. S2

(DOCX 29.3 kb)

Fig. S3

(DOCX 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, YH., Shih, Yh., Lai, YC. et al. Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ Sci Pollut Res 21, 9529–9537 (2014). https://doi.org/10.1007/s11356-014-2647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2647-8

Keywords

Navigation