Skip to main content

Advertisement

Log in

Anogenital distance and its application in environmental health research

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Anogenital distance (AGD), a useful anthropometric measurement for genital development in both animals and humans, was originally found by reproductive toxicologists in rodent experiments. As an easy-to-measure and sensitive marker, AGD has become a bioassay of fetal androgen action and a well-established reproductive toxicity endpoint in animals. It is generally accepted that AGD is sexually dimorphic in many mammals, with males having longer AGD than females. Exposure to proposed endocrine disruptors may result in reduced AGD; thus, it has been used to measure health effects of compounds with endocrine-altering properties or endocrine-disrupting chemicals (EDCs) in environmental toxicology. Moreover, AGD is an important clinical measure to address endocrine-sensitive endpoints in the first year of life and to assess the adverse impact of in utero exposure to environmental EDCs. Recently, AGD has been identified as one of the endpoints in the US Environmental Protection Agency guidelines for reproductive toxicity studies in humans, but use of AGD in human studies is still rare, and the results remain mixed and inconclusive due to many reasons. In order to achieve a breakthrough, researchers are endeavoring to standardize the measurement of AGD, normalize age-specific population data in different ethnic groups, and conduct more in-depth human researches in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acerini CL, Hughes IA (2006) Endocrine disrupting chemicals: a new and emerging public health problem? Arch Dis Child 91:633–641

    Article  CAS  Google Scholar 

  • Barrett ES, Parlett LE, Redmon JB, Swan SH (2014) Evidence for sexually dimorphic associations between maternal characteristics and anogenital distance, a marker of reproductive development. Am J Epidemiol 179:57–66

    Article  Google Scholar 

  • Baum MJ, Woutersen PJ, Slob AK (1991) Sex difference in whole-body androgen content in rats on fetal days 18 and 19 without evidence that androgen passes from males to females. Biol Reprod 44:747–751

    Article  CAS  Google Scholar 

  • Braun JM, Sathyanarayana S, Hauser R (2013) Phthalate exposure and children’s health. Curr Opin Pediatr 25:247–254

    Article  CAS  Google Scholar 

  • Bustamante-Montes L, Hernandez-Valero M, Flores-Pimentel D, Garcia-Fabila M, Amaya-Chavez A, Barr D, et al. 2013. Prenatal exposure to phthalates is associated with decreased anogenital distance and penile size in male newborns. Journal of Developmental Origins of Health and Disease 4. doi:10.1017/S2040174413000172

  • Callegari C, Everett S, Ross M, Brasel JA (1987) Anogenital ratio: measure of fetal virilization in premature and full-term newborn infants. J Pediatr 111:240–243

    Article  CAS  Google Scholar 

  • Christiansen S, Boberg J, Axelstad M, Dalgaard M, Vinggaard A, Metzdorff S et al (2010) Low-dose perinatal exposure to di(2-ethylhexyl) phthalate induces anti-androgenic effects in male rats. Reprod Toxicol 30:313–321

    Article  CAS  Google Scholar 

  • Dean A, Sharpe RM (2013) Clinical review: anogenital distance or digit length ratio as measures of fetal androgen exposure: relationship to male reproductive development and its disorders. J Clin Endocrinol Metab 98:2230–2238

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM et al (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30:293–342

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis E, Palioura E, Kandarakis SA, Koutsilieris M (2010) The impact of endocrine disruptors on endocrine targets. Horm Metab Res 42:543–552

    Article  CAS  Google Scholar 

  • Eisenberg ML, Hsieh TC, Lipshultz LI (2013) The relationship between anogenital distance and age. Androl 1:90–93

    Article  CAS  Google Scholar 

  • Ema M, Miyawaki E, Hirose A, Kamata E (2003) Decreased anogenital distance and increased incidence of undescended testes in fetuses of rats given monobenzyl phthalate, a major metabolite of butyl benzyl phthalate. Reprod Toxicol 17:407–412

    Article  CAS  Google Scholar 

  • Fowler PA, Bhattacharya S, Flannigan S, Drake AJ, O’Shaughnessy PJ (2011) Maternal cigarette smoking and effects on androgen action in male offspring: unexpected effects on second-trimester anogenital distance. J Clin Endocrinol Metab 96:E1502–E1506

    Article  CAS  Google Scholar 

  • Gallavan RH Jr, Holson JF, Stump DG, Knapp JF, Reynolds VL (1999) Interpreting the toxicologic significance of alterations in anogenital distance: potential for confounding effects of progeny body weights. Reprod Toxicol 13:383–390

    Article  CAS  Google Scholar 

  • Gray LE Jr, Ostby J, Monosson E, Kelce WR (1999) Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol Ind Health 15:48–64

    Article  Google Scholar 

  • Gray LE Jr, Laskey J, Ostby J (2006) Chronic di-n-butyl phthalate exposure in rats reduces fertility and alters ovarian function during pregnancy in female long Evans hooded rats. Toxicol Sci 93:189–195

    Article  CAS  Google Scholar 

  • Hotchkiss AK, Lambright CS, Ostby JS, Parks-Saldutti L, Vandenbergh JG, Gray LE Jr (2007) Prenatal testosterone exposure permanently masculinizes anogenital distance, nipple development, and reproductive tract morphology in female Sprague-Dawley rats. Toxicol Sci 96:335–345

    Article  CAS  Google Scholar 

  • Hsieh MH, Breyer BN, Eisenberg ML, Baskin LS (2008) Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption. Curr Urol Rep 9:137–142

    Article  Google Scholar 

  • Hsieh MH, Eisenberg ML, Hittelman AB, Wilson JM, Tasian GE, Baskin LS (2012) Caucasian male infants and boys with hypospadias exhibit reduced anogenital distance. Hum Reprod 27:1577–1580

    Article  Google Scholar 

  • Huang PC, Kuo PL, Chou YY, Lin SJ, Lee CC (2009) Association between prenatal exposure to phthalates and the health of newborns. Environ Int 35:14–20

    Article  Google Scholar 

  • Huang XF, Li Y, Gu YH, Liu M, Xu Y, Yuan Y et al (2012) The effects of di-(2-ethylhexyl)-phthalate exposure on fertilization and embryonic development in vitro and testicular genomic mutation in vivo. PLoS One 7:e50465

    Article  CAS  Google Scholar 

  • Jiang J, Ma L, Yuan L, Wang X, Zhang W (2007) Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Toxicology 232:286–293

    Article  CAS  Google Scholar 

  • Jin MH, Ko HK, Hong CH, Han SW (2008) In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin affects the development of reproductive system in mouse. Yonsei Med J 49:843–850

    Article  CAS  Google Scholar 

  • Jin MH, Hong CH, Lee HY, Kang HJ, Han SW (2010) Toxic effects of lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on development of male reproductive system: involvement of antioxidants, oxidants, and p53 protein. Environ Toxicol 25:1–8

    Article  CAS  Google Scholar 

  • Kamrin MA (2009) Phthalate risks, phthalate regulation, and public health: a review. J Toxicol Environ Health B Crit Rev 12:157–174

    Article  CAS  Google Scholar 

  • Latini G, Del Vecchio A, Massaro M, Verrotti A, DEF C (2006) In utero exposure to phthalates and fetal development. Curr Med Chem 13:2527–2534

    Article  CAS  Google Scholar 

  • Lin H, Lian Q-Q, Hu G-X, Jin Y, Zhang Y, Hardy DO et al (2009) In utero and lactational exposures to diethylhexyl-phthalate affect two populations of Leydig cells in male long-Evans rats. Biol Reprod 80:882–888

    Article  CAS  Google Scholar 

  • Longnecker MP, Gladen BC, Cupul-Uicab LA, Romano-Riquer SP, Weber JP, Chapin RE et al (2007) In utero exposure to the antiandrogen 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) in relation to anogenital distance in male newborns from Chiapas, Mexico. Am J Epidemiol 165:1015–1022

    Article  Google Scholar 

  • Manno F (2008) Measurement of the digit lengths and the anogenital distance in mice. Physiol Behav 93:364–368

    Article  CAS  Google Scholar 

  • Marois G (1968) Action of progesterone, testosterone and estradiol on the anogenital distance and somatic sexual differentiation in rats. Biol Med 57:44–90

    CAS  Google Scholar 

  • Marsee K, Woodruff TJ, Axelrad DA, Calafat AM, Swan SH (2006) Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance. Environ Health Perspect 114:805–809

    Article  CAS  Google Scholar 

  • Martino-Andrade AJ, Chahoud I (2010) Reproductive toxicity of phthalate esters. Mol Nutr Food Res 54:148–157

    Article  CAS  Google Scholar 

  • McEwen GN Jr, Renner G (2006) Validity of anogenital distance as a marker of in utero phthalate exposure. Environ Health Perspect 114:A19–A20, author reply A20–11

    Article  Google Scholar 

  • Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philosophical Transactions of the Royal Society of London Series B. Biol Sci 364:2097–2113

    Article  CAS  Google Scholar 

  • Moral R, Wang R, Russo IH, Lamartiniere CA, Pereira J, Russo J (2008) Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol 196:101–112

    Article  CAS  Google Scholar 

  • Mylchreest E, Cattley RC, Foster PM (1998) Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci 43:47–60

    Article  CAS  Google Scholar 

  • Papadopoulou E, Vafeiadi M, Agramunt S, Basagana X, Mathianaki K, Karakosta P et al (2013) Anogenital distances in newborns and children from Spain and Greece: predictors, tracking and reliability. Paediatr Perinat Epidemiol 27:89–99

    Article  Google Scholar 

  • Romano-Riquer SP, Hernandez-Avila M, Gladen BC, Cupul-Uicab LA, Longnecker MP (2007) Reliability and determinants of anogenital distance and penis dimensions in male newborns from Chiapas, Mexico. Paediatr Perinat Epidemiol 21:219–228

    Article  Google Scholar 

  • Saillenfait A, Sabate J, Gallissot F (2009) Effects of in utero exposure to di-n-hexyl phthalate on the reproductive development of the male rat. Reprod Toxicol 28:468–476

    Article  CAS  Google Scholar 

  • Salazar-Martinez E, Romano-Riquer P, Yanez-Marquez E, Longnecker MP, Hernandez-Avila M. 2004. Anogenital distance in human male and female newborns: a descriptive, cross-sectional study. Environmental Health: A Global Access Science Source 3:8

    Google Scholar 

  • Sathyanarayana S (2008) Phthalates and children’s health. Curr Probl Pediatr Adolesc Health Care 38:34–49

    Article  Google Scholar 

  • Sathyanarayana S, Beard L, Zhou C, Grady R (2010) Measurement and correlates of ano-genital distance in healthy, newborn infants. Int J Androl 33:317–323

    Article  CAS  Google Scholar 

  • Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127:204–215

    Article  CAS  Google Scholar 

  • Scott HM, Hutchison GR, Jobling MS, McKinnell C, Drake AJ, Sharpe RM (2008) Relationship between androgen action in the “male programming window”, fetal sertoli cell number, and adult testis size in the rat. Endocrinology 149:5280–5287

    Article  CAS  Google Scholar 

  • Sharpe RM (2005) Phthalate exposure during pregnancy and lower anogenital index in boys: wider implications for the general population? Environ Health Perspect 113:A504–A505

    Article  Google Scholar 

  • Skinner MK (2011) Role of epigenetics in developmental biology and transgenerational inheritance. Birth defects Research Part C, Embryo Today. Rev 93:51–55

    CAS  Google Scholar 

  • Sung E, Turan N, Ho PW, Ho SL, Jarratt PD, Waring RH et al (2012) Detection of endocrine disruptors - from simple assays to whole genome scanning. Int J Androl 35:407–414

    Article  CAS  Google Scholar 

  • Suzuki Y, Yoshinaga J, Mizumoto Y, Serizawa S, Shiraishi H (2012) Foetal exposure to phthalate esters and anogenital distance in male newborns. Int J Androl 35:236–244

    Article  CAS  Google Scholar 

  • Swan SH (2006) Prenatal phthalate exposure and anogenital distance in male infants. Environ Health Perspect 114:A88–A89

    Article  Google Scholar 

  • Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM et al (2005) Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 113:1056–1061

    Article  CAS  Google Scholar 

  • Taylor JA, Richter CA, Ruhlen RL, vom Saal FS (2011) Estrogenic environmental chemicals and drugs: mechanisms for effects on the developing male urogenital system. J Steroid Biochem Mol Biol 127:83–95

    Article  CAS  Google Scholar 

  • Thankamony A, Ong KK, Dunger DB, Acerini CL, Hughes IA (2009) Anogenital distance from birth to 2 years: a population study. Environ Health Perspect 117:1786–1790

    Google Scholar 

  • Thankamony A, Lek N, Carroll D, Williams M, Dunger DB, Acerini CL et al (2013) Anogenital distance and penile length in infants with hypospadias or cryptorchidism: comparison with normative data. Environ Health Perspect. doi:10.1289/ehp.1307178

    Google Scholar 

  • Vafeiadi M, Agramunt S, Papadopoulou E, Besselink H, Mathianaki K, Karakosta P et al (2013) In utero exposure to dioxins and dioxin-like compounds and anogenital distance in newborns and infants. Environ Health Perspect 121:125–130

    CAS  Google Scholar 

  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455

    Article  CAS  Google Scholar 

  • Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS (2003) Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111:994–1006

    Article  CAS  Google Scholar 

  • Woodruff TJ (2011) Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. J Steroid Biochem Mol Biol 127:108–117

    Article  CAS  Google Scholar 

  • Xu X, Zhang Y, Yekeen T, Li Y, Zhuang B, Huo X. 2013. Increase male genital diseases morbidity linked to informal electronic waste recycling in Guiyu, China. Environmental Science and Pollution Research. doi:10.1007/s11356-013-2289-2

  • Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM et al (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from the endocrine society. Endocrinology 153:4097–4110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was partially financially supported by the Natural Science Foundation of China (21177080, 21377077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Huo.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Xu, X. & Huo, X. Anogenital distance and its application in environmental health research. Environ Sci Pollut Res 21, 5457–5464 (2014). https://doi.org/10.1007/s11356-014-2570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2570-z

Keywords

Navigation