Skip to main content

Advertisement

Log in

A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands

  • 14th EuCheMS International Conference on Chemistry and the Environment (ICCE 2013, Barcelona, June 25 - 28, 2013)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pharmaceuticals are commonly found both in the aquatic and the agricultural environments as a consequence of the human activities and associated discharge of wastewater effluents to the environment. The utilization of treated effluent for crop irrigation, along with land application of manure and biosolids, accelerates the introduction of these compounds into arable lands and crops. Despite the low concentrations of pharmaceuticals usually found, the continuous introduction into the environment from different pathways makes them ‘pseudo-persistent’. Several reviews have been published regarding the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results. This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Bartha B, Huber C, Harpaintner R, Schröder P (2010) Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. Environ Sci Pollut Res 17(9):1553–1562. doi:10.1007/s11356-010-0342-y

    Article  CAS  Google Scholar 

  • Batchelder AR (1981) Chlortetracycline and oxytetracycline effects on plant growth and development in liquid cultures. J Environ Qual 10(4):515–518

    Article  CAS  Google Scholar 

  • Batchelder AR (1982) Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11(4):675–678

    Article  CAS  Google Scholar 

  • Bernot MJ, Smith L, Frey J (2013) Human and veterinary pharmaceutical abundance and transport in a rural Central Indiana stream influenced by confined animal feeding operations (CAFOs). Sci Total Environ 445–446(0):219–230. doi:10.1016/j.scitotenv.2012.12.039

    Article  CAS  Google Scholar 

  • Boonsaner M, Hawker DW (2010) Accumulation of oxytetracycline and norfloxacin from saline soil by soybeans. Sci Total Environ 408(7):1731–1737. doi:10.1016/j.scitotenv.2009.12.032

    Article  CAS  Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54(6):2288–2297. doi:10.1021/jf053041t

    Article  CAS  Google Scholar 

  • Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, DeLeo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Joakim Larsson DG, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229

    Article  Google Scholar 

  • Brain RA, Ramirez AJ, Fulton BA, Chambliss CK, Brooks BW (2008) Herbicidal effects of sulfamethoxazole in Lemna gibba: using p-aminobenzoic acid as a biomarker of effect. Environ Sci Technol 42(23):8965–8970. doi:10.1021/es801611a

    Article  CAS  Google Scholar 

  • Brambilla G, Patrizii M, De Filippis SP, Bonazzi G, Mantovi P, Barchi D, Migliore L (2007) Oxytetracycline as environmental contaminant in arable lands. Anal Chim Acta 586(1–2):326–329. doi:10.1016/j.aca.2006.11.019

    Article  CAS  Google Scholar 

  • Brix H (1994) Use of constructed wetlands in water pollution control: historical development, present status, and future perspectives. Water Sci Technol 30(8 pt 8):209–223

    CAS  Google Scholar 

  • Brix H, Schierup HH (1989) The use of aquatic macrophytes in water-pollution control. AMBIO 18(2):100–107

    Google Scholar 

  • Calderón-Preciado D, Jiménez-Cartagena C, Matamoros V, Bayona JM (2011) Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res 45(1):221–231. doi:10.1016/j.watres.2010.07.050

    Article  CAS  Google Scholar 

  • Calderón-Preciado D, Renault Q, Matamoros V, Cañameras N, Bayona JM (2012) Uptake of organic emergent contaminants in spath and lettuce: an in vitro experiment. J Agric Food Chem 60(8):2000–2007. doi:10.1021/jf2046224

    Article  CAS  Google Scholar 

  • Calderón-Preciado D, Matamoros V, Savé R, Muñoz P, Biel C, Bayona JM (2013) Uptake of microcontaminants by crops irrigated with reclaimed water and groundwater under real field greenhouse conditions. Environ Sci Pollut Res 20(6):3629–3638. doi:10.1007/s11356-013-1509-0

    Article  CAS  Google Scholar 

  • Carvalho PN, Basto MCP, Almeida CMR (2012) Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresour Technol 116(0):497–501. doi:10.1016/j.biortech.2012.03.066

    Article  CAS  Google Scholar 

  • Cascone A, Forni C, Migliore L (2004) Flumequine uptake and the aquatic duckweed, Lemna minor L. Water Air Soil Pollut 156(1):241–249. doi:10.1023/B:WATE.0000036816.15999.53

    Article  CAS  Google Scholar 

  • D’Abrosca B, Fiorentino A, Izzo A, Cefarelli G, Pascarella MT, Uzzo P, Monaco P (2008) Phytotoxicity evaluation of five pharmaceutical pollutants detected in surface water on germination and growth of cultivated and spontaneous plants. J Environ Sci Health A 43(3):285–294. doi:10.1080/10934520701792803

    Article  CAS  Google Scholar 

  • Daneshvar A, Svanfelt J, Kronberg L, Weyhenmeyer GA (2012) Neglected sources of pharmaceuticals in river water—footprints of a Reggae festival. J Environ Monitor 14(2):596–603

    Article  CAS  Google Scholar 

  • Datta R, Das P, Smith S, Punamiya P, Ramanathan DM, Reddy R, Sarkar D (2013) Phytoremediation potential of vetiver grass [Chrysopogon zizanioides (L.)] for tetracycline. Int J Phytoremed 15(4):343–351. doi:10.1080/15226514.2012.702803

    Article  CAS  Google Scholar 

  • Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36(4):1224–1230

    Article  CAS  Google Scholar 

  • Dordio AV, Duarte C, Barreiros M, Carvalho AJP, Pinto AP, da Costa CT (2009) Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.—potential use for phytoremediation? Bioresour Technol 100(3):1156–1161

    Article  CAS  Google Scholar 

  • Dordio A, Ferro R, Teixeira D, Palace AJ, Pinto AP, Dias CMB (2011a) Study on the use of Typha spp. for the phytotreatment of water contaminated with ibuprofen. Int J Environ Anal Chem 91(7–8):654–667. doi:10.1080/03067311003782708

    Article  CAS  Google Scholar 

  • Dordio AV, Belo M, Martins Teixeira D, Palace Carvalho AJ, Dias CMB, Picó Y, Pinto AP (2011b) Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresour Technol 102(17):7827–7834. doi:10.1016/j.biortech.2011.06.050

    Article  CAS  Google Scholar 

  • Du L, Liu W (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Dev 32(2):309–327. doi:10.1007/s13593-011-0062-9

    Article  CAS  Google Scholar 

  • Eggen T, Lillo C (2012) Antidiabetic II drug metformin in plants: uptake and translocation to edible parts of cereals, oily seeds, beans, tomato, squash, carrots, and potatoes. J Agric Food Chem 60(28):6929–6935. doi:10.1021/jf301267c

    Article  CAS  Google Scholar 

  • Eggen T, Asp TN, Grave K, Hormazabal V (2011) Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 85(1):26–33. doi:10.1016/j.chemosphere.2011.06.041

    Article  CAS  Google Scholar 

  • Farkas MH, Berry JO, Aga DS (2007) Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environ Sci Technol 41(4):1450–1456. doi:10.1021/es061651j

    Article  CAS  Google Scholar 

  • Farkas MH, Mojica E-RE, Patel M, Aga DS, Berry JO (2009) Development of a rapid biolistic assay to determine changes in relative levels of intracellular calcium in leaves following tetracycline uptake by pinto bean plants. Analyst 134(8):1594–1600. doi:10.1039/B902147G

    Article  CAS  Google Scholar 

  • Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011a) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409(19):3555–3563. doi:10.1016/j.scitotenv.2010.03.036

    Article  CAS  Google Scholar 

  • Fatta-Kassinos D, Vasquez MI, Kümmerer K (2011b) Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85(5):693–709. doi:10.1016/j.chemosphere.2011.06.082

    Article  CAS  Google Scholar 

  • Ferro S, Trentin AR, Caffieri S, Ghisi R (2010) Antibacterial sulfonamides: accumulation and effects in barley plants. Fresenius Environ Bull 19(9 B):2094–2099

    CAS  Google Scholar 

  • Forni C, Cascone A, Cozzolino S, Migliore L (2001) Drugs uptake and degradation by aquatic plants as a bioremediation technique. Minerva Biotecnologica 13(2):151–152

    Google Scholar 

  • Forni C, Cascone A, Fiori M, Migliore L (2002) Sulphadimethoxine and Azolla filiculoides Lam.: a model for drug remediation. Water Res 36(13):3398–3403. doi:10.1016/S0043-1354(02)00015-5

    Article  CAS  Google Scholar 

  • Furtula V, Stephenson GL, Olaveson KM, Chambers PA (2012) Effects of the veterinary pharmaceutical salinomycin and its formulation on the plant Brassica rapa. Arch Environ Contam Toxicol 63(4):513–522. doi:10.1007/s00244-012-9807-y

    Article  CAS  Google Scholar 

  • Garcia-Rodríguez A, Matamoros V, Fontàs C, Salvadó V (2013) The influence of light exposure, water quality and vegetation on the removal of sulfonamides and tetracyclines: a laboratory-scale study. Chemosphere 90(8):2297–2302. doi:10.1016/j.chemosphere.2012.09.092

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30. doi:10.1016/j.plantsci.2008.09.014

    Article  CAS  Google Scholar 

  • Goss MJ, Tubeileh A, Goorahoo D (2013) Chapter 5—A review of the use of organic amendments and the risk to human health. In: Donald LS (ed) Advances in agronomy, vol. 120. Academic, San Diego, pp 275–379. doi:10.1016/B978-0-12-407686-0.00005-1

  • Grassi M, Rizzo L, Farina A (2013) Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ Sci Pollut Res 20(6):3616–3628. doi:10.1007/s11356-013-1636-7

    Article  CAS  Google Scholar 

  • Grote M, Schwake-Anduschus C, Michel R, Stevens H, Heyser W, Langenkämper G, Betsche T, Freitag M (2007) Incorporation of veterinary antibiotics into crops from manured soil. Landbauforschung Volkenrode 57(1):25–32

    CAS  Google Scholar 

  • Gujarathi NP, Haney BJ, Linden JC (2005) Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline, and oxytetracycline, in aqueous wastewater systems. Int J Phytoremed 7(2):99–112. doi:10.1080/16226510590950405

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36(2):357–393

    Article  Google Scholar 

  • Harris SJ, Cormican M, Cummins E (2012) Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to human health—a review. Hum Ecol Risk Assess 18(4):767–809. doi:10.1080/10807039.2012.688702

    Article  CAS  Google Scholar 

  • Helt CD, Weber KP, Legge RL, Slawson RM (2012) Antibiotic resistance profiles of representative wetland bacteria and faecal indicators following ciprofloxacin exposure in lab-scale constructed mesocosms. Ecol Eng 39:113–122. doi:10.1016/j.ecoleng.2011.11.007

    Article  Google Scholar 

  • Herklotz PA, Gurung P, Vanden Heuvel B, Kinney CA (2010) Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 78(11):1416–1421. doi:10.1016/j.chemosphere.2009.12.048

    Article  CAS  Google Scholar 

  • Hillis D, Fletcher J, Solomon K, Sibley P (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Contam Toxicol 60(2):220–232. doi:10.1007/s00244-010-9624-0

    Article  CAS  Google Scholar 

  • Hoang TTT, Tu LTC, Le NP, Dao QP (2012) A preliminary study on the phytoremediation of antibiotic contaminated sediment. Int J Phytoremed 15(1):65–76. doi:10.1080/15226514.2012.670316

    Article  CAS  Google Scholar 

  • Huber C, Bartha B, Schröder P (2012) Metabolism of diclofenac in plants—hydroxylation is followed by glucose conjugation. J Hazard Mater 243(0):250–256. doi:10.1016/j.jhazmat.2012.10.023

    Article  CAS  Google Scholar 

  • Iori V, Pietrini F, Zacchini M (2012) Assessment of ibuprofen tolerance and removal capability in Populus nigra L. by in vitro culture. J Hazard Mater 229–230(0):217–223. doi:10.1016/j.jhazmat.2012.05.097

    Article  CAS  Google Scholar 

  • Jjemba PK (2002a) The effect of chloroquine, quinacrine, and metronidazole on both soybean plants and soil microbiota. Chemosphere 46(7):1019–1025. doi:10.1016/S0045-6535(01)00139-4

    Article  CAS  Google Scholar 

  • Jjemba PK (2002b) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93(1–3):267–278. doi:10.1016/S0167-8809(01)00350-4

    Article  Google Scholar 

  • Jones-Lepp TL, Sanchez CA, Moy T, Kazemi R (2010) Method development and application to determine potential plant uptake of antibiotics and other drugs in irrigated crop production systems. J Agric Food Chem 58(22):11568–11573. doi:10.1021/jf1028152

    Article  CAS  Google Scholar 

  • Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health B 10(8):559–573

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams: a national reconnaissance. Environ Sci Technol 36(10.1021/es011055j):1202–1211

    Article  CAS  Google Scholar 

  • Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147(1):187–193. doi:10.1016/j.envpol.2006.08.016

    Article  CAS  Google Scholar 

  • Kot-Wasik A, Debska J, Namiesnik J (2007) Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products. TrAC Trends Anal Chem 26(6):557–568

    Article  CAS  Google Scholar 

  • Kotyza J, Soudek P, Kafka Z, Vaněk T (2010) Phytoremediation of pharmaceuticals—preliminary study. Int J Phytoremed 12(3):306–316. doi:10.1080/15226510903563900

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34(6):2082–2085

    Article  CAS  Google Scholar 

  • Kumar R, Lee J, Cho J (2012) Fate, occurrence, and toxicity of veterinary antibiotics in environment. J Korean Soc Appl Biol Chem 55(6):701–709. doi:10.1007/s13765-012-2220-4

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434. doi:10.1016/j.chemosphere.2008.11.086

    Article  CAS  Google Scholar 

  • Li Z-j, Xie X-y, Zhang S-q, Liang Y-c (2011) Negative effects of oxytetracycline on wheat (Triticum aestivum L.) growth, root activity, photosynthesis, and chlorophyll contents. Agric Sci China 10(10):1545–1553. doi:10.1016/S1671-2927(11)60150-8

    Article  CAS  Google Scholar 

  • Li W, Shi Y, Gao L, Liu J, Cai Y (2012) Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 89(11):1307–1315. doi:10.1016/j.chemosphere.2012.05.079

    Article  CAS  Google Scholar 

  • Li X, Yu H, Xu S, Hua R (2013) Uptake of three sulfonamides from contaminated soil by pakchoi cabbage. Ecotoxicol Environ Saf 92(0):297–302. doi:10.1016/j.ecoenv.2013.03.010

    Article  CAS  Google Scholar 

  • Li Y, Zhu G, Ng WJ, Tan SK (2014) A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci Total Environ 468–469(0):908–932. doi:10.1016/j.scitotenv.2013.09.018

    Article  CAS  Google Scholar 

  • Lillenberg M, Litvin SV, Nei L, Roasto M, Sepp K (2010) Enrofloxacin and ciprofloxacin uptake by plants from soil. Agron Res 8(1):807–814

    Google Scholar 

  • Liu F, Ying G-G, Tao R, Zhao J-L, Yang J-F, Zhao L-F (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157(5):1636–1642. doi:10.1016/j.envpol.2008.12.021

    Article  CAS  Google Scholar 

  • Liu L, Liu Y-h, Liu C-x, Wang Z, Dong J, Zhu G-f, Huang X (2013) Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecol Eng 53(0):138–143. doi:10.1016/j.ecoleng.2012.12.033

    Article  Google Scholar 

  • Martin Ruel S, Choubert JM, Budzinski H, Miège C, Esperanza M, Coquery M (2012) Occurrence and fate of relevant substances in wastewater treatment plants regarding Water Framework Directive and future legislations. Water Sci Technol 65(7):1179–1189

    Article  CAS  Google Scholar 

  • Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40(18):5811–5816. doi:10.1021/es0607741

    Article  CAS  Google Scholar 

  • Matamoros V, Garcia J, Bayona JM (2005) Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: a pilot-scale study. Environ Sci Technol 39(14):5449–5454. doi:10.1021/es050022r

    Article  CAS  Google Scholar 

  • Matamoros V, Arias CA, Nguyen LX, Salvadó V, Brix H (2012a) Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere 88(9):1083–1089

    Article  CAS  Google Scholar 

  • Matamoros V, Nguyen LX, Arias CA, Salvadó V, Brix H (2012b) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88(10):1257–1264. doi:10.1016/j.chemosphere.2012.04.004

    Article  CAS  Google Scholar 

  • Michelini L, Meggio F, Rocca NL, Ferro S, Ghisi R (2012a) Accumulation and effects of sulfadimethoxine in Salix fragilis L. plants: a preliminary study to phytoremediation purposes. Int J Phytoremed 14(4):388–402. doi:10.1080/15226514.2011.620654

    Article  Google Scholar 

  • Michelini L, Reichel R, Werner W, Ghisi R, Thiele-Bruhn S (2012b) Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants. Water Air Soil Pollut 223(8):5243–5257. doi:10.1007/s11270-012-1275-5

    Article  CAS  Google Scholar 

  • Migliore L, Brambilla G, Cozzolino S, Gaudio L (1995) Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays). Agric Ecosyst Environ 52(2–3):103–110. doi:10.1016/0167-8809(94)00549-T

    Article  CAS  Google Scholar 

  • Migliore L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996) Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida). Agric Ecosyst Environ 60(2–3):121–128. doi:10.1016/S0167-8809(96)01090-0

    Article  CAS  Google Scholar 

  • Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, Gaudio L (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants. Chemosphere 37(14–15):2957–2961. doi:10.1016/S0045-6535(98)00336-1

    Article  CAS  Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2000) Phytotoxicity to and uptake of flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicaria L. Chemosphere 40(7):741–750. doi:10.1016/S0045-6535(99)00448-8

    Article  CAS  Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52(7):1233–1244. doi:10.1016/S0045-6535(03)00272-8

    Article  CAS  Google Scholar 

  • Migliore L, Godeas F, De Filippis SP, Mantovi P, Barchi D, Testa C, Rubattu N, Brambilla G (2010a) Hormetic effect(s) of tetracyclines as environmental contaminant on Zea mays. Environ Pollut 158(1):129–134. doi:10.1016/j.envpol.2009.07.039

    Article  CAS  Google Scholar 

  • Migliore L, Rotini A, Cerioli NL, Cozzolino S, Fiori M (2010b) Phytotoxic antibiotic sulfadimethoxine elicits a complex hormetic response in the weed Lythrum salicaria L. Dose–Response 8(4):414–427

    CAS  Google Scholar 

  • Mikes O, Trapp S (2010) Acute toxicity of the dissociating veterinary antibiotics trimethoprim to willow trees at varying pH. Bull Environ Contam Toxicol 85(6):556–561. doi:10.1007/s00128-010-0150-6

    Article  CAS  Google Scholar 

  • Piotrowicz-Cieślak AI, Adomas B, Nałęcz-Jawecki G, Michalczyk DJ (2010) Phytotoxicity of sulfamethazine soil pollutant to six legume plant species. J Toxic Environ Health A 73(17–18):1220–1229. doi:10.1080/15287394.2010.492006

    Article  CAS  Google Scholar 

  • Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67(4):387–396. doi:10.1016/j.aquatox.2004.02.001

    Article  CAS  Google Scholar 

  • Redshaw CH, Wootton VG, Rowland SJ (2008) Uptake of the pharmaceutical fluoxetine hydrochloride from growth medium by Brassicaceae. Phytochemistry 69(13):2510–2516. doi:10.1016/j.phytochem.2008.06.018

    Article  CAS  Google Scholar 

  • Reinhold D, Vishwanathan S, Park JJ, Oh D, Michael Saunders F (2010) Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80(7):687–692. doi:10.1016/j.chemosphere.2010.05.045

    Article  CAS  Google Scholar 

  • Richardson SD (2012) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 84(2):747–778. doi:10.1021/ac202903d

    Article  CAS  Google Scholar 

  • Shenker M, Harush D, Ben-Ari J, Chefetz B (2011) Uptake of carbamazepine by cucumber plants—a case study related to irrigation with reclaimed wastewater. Chemosphere 82(6):905–910. doi:10.1016/j.chemosphere.2010.10.052

    Article  CAS  Google Scholar 

  • Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. doi:10.1016/j.envint.2011.07.012

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658. doi:10.1016/S0925-8574(02)00026-5

    Article  Google Scholar 

  • Tanoue R, Sato Y, Motoyama M, Nakagawa S, Shinohara R, Nomiyama K (2012) Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J Agric Food Chem 60(41):10203–10211. doi:10.1021/jf303142t

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260. doi:10.1016/s0043-1354(98)00099-2

    Article  CAS  Google Scholar 

  • Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39(2):154–160

    Article  CAS  Google Scholar 

  • Verlicchi P, Galletti A, Petrovic M, Barceló D, Al Aukidy M, Zambello E (2013) Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed—analysis of their respective contributions. Sci Total Environ 454–455(0):411–425. doi:10.1016/j.scitotenv.2013.03.044

    Article  CAS  Google Scholar 

  • Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35(1):1–17. doi:10.1016/j.ecoleng.2008.08.016

    Article  Google Scholar 

  • Winker M, Clemens J, Reich M, Gulyas H, Otterpohl R (2010) Ryegrass uptake of carbamazepine and ibuprofen applied by urine fertilization. Sci Total Environ 408(8):1902–1908. doi:10.1016/j.scitotenv.2010.01.028

    Article  CAS  Google Scholar 

  • Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP (2010) Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ Sci Technol 44(16):6157–6161. doi:10.1021/es1011115

    Article  CAS  Google Scholar 

  • Wu X, Conkle JL, Gan J (2012) Multi-residue determination of pharmaceutical and personal care products in vegetables. J Chromatogr A 1254(0):78–86. doi:10.1016/j.chroma.2012.07.041

    Article  CAS  Google Scholar 

  • Xie X, Zhou Q, He Z, Bao Y (2010) Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.). Environ Toxicol Chem 29(4):922–928. doi:10.1002/etc.79

    Article  CAS  Google Scholar 

  • Xuan R, Arisi L, Qiquan W, Scott RY, and Biswas K (2010) Hydrolysis and photolysis of oxytetracycline in aqueous solution. J Environ Sci Health Part B 45:73–81

    Google Scholar 

  • Zhang DQ, Hua T, Gersberg RM, Zhu J, Ng WJ, Tan SK (2012) Fate of diclofenac in wetland mesocosms planted with Scirpus validus. Ecol Eng 49(0):59–64. doi:10.1016/j.ecoleng.2012.08.018

    Article  Google Scholar 

  • Zhang DQ, Hua T, Gersberg RM, Zhu J, Ng WJ, Tan SK (2013) Carbamazepine and naproxen: fate in wetland mesocosms planted with Scirpus validus. Chemosphere 91(1):14–21. doi:10.1016/j.chemosphere.2012.11.018

    Article  CAS  Google Scholar 

  • Zhi W, Ji G (2012) Constructed wetlands, 1991–2011: a review of research development, current trends, and future directions. Sci Total Environ 441(0):19–27. doi:10.1016/j.scitotenv.2012.09.064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by the Aarhus University Research Foundation (AUFF) Center for Advanced Water Purification and partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through Portuguese FCT—Foundation for Science and Technology under the project ‘PEst-C/MAR/LA0015/2011’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro N. Carvalho.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, P.N., Basto, M.C.P., Almeida, C.M.R. et al. A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res 21, 11729–11763 (2014). https://doi.org/10.1007/s11356-014-2550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2550-3

Keywords

Navigation