Skip to main content
Log in

Biotic and abiotic degradation of pesticide Dufulin in soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Dufulin is a newly developed antiviral agent (or pesticide) that activates systemic acquired resistance of plants. This pesticide is widely used in China to prevent abroad viral diseases in rice, tobacco and vegetables. In this study, the potential impacts such as soil type, moisture, temperature, and other factors on Dufulin degradation in soil were investigated. Degradation of Dufulin followed the first-order kinetics. The half-life values varied from 2.27 to 150.68 days. The dissipation of Dufulin was greatly affected by soil types, with DT50 (Degradation half time) varying between 17.59, 31.36, and 43.32 days for Eutric Gleysols, Cumulic Anthrosols, and Dystric Regosols, respectively. The elevated moisture accelerated the decay of Dufulin in soil. Degradation of Dufulin increased with temperature and its half-life values ranged from 16.66 to 42.79 days. Sterilization of soils and treatment with H2O2 resulted in a 6- and 8-fold decrease in degradation rates compared to the control, suggesting that Dufulin degradation was largely governed by microbial processes. Under different light spectra, the most effective degradation occurred with 100-W UV light (DT50 = 2.27 days), followed by 15-W UV light (DT50 = 8.32 days) and xenon light (DT50 = 14.26 days). Analysis by liquid chromatography-mass spectroscopy (LC-MS) revealed that 2-amino-4-methylbenzothiazole was one of the major decayed products of Dufulin in soils, suggesting that elimination of diethyl phosphate and 2-fluorobenzaldehyde was most like the degradation pathway of Dufulin in Eutric Gleysols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anjum R, Rahman M, Masood F, Malik A (2012) Bioremediation of Pesticides from Soil and Wastewater. Environmental Protection Strategies for Sustainable Development. Springer Netherlands, pp 295-328

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soil and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Article  Google Scholar 

  • Baczynski TP, Pleissner D, Grotenhuis T (2010) Anaerobic biodegradation of organochlorine pesticides in contaminated soil—significance of temperature and availability. Chemosphere 78:22–28

    Article  CAS  Google Scholar 

  • Bedos C, Rousseau-Djabri MF, Flura D, Masson S, Barriuso E, Cellier P (2002) Rate of pesticide volatilization from soil: an experimental approach with a wind tunnel system applied to trifluralin. Atmos Environ 36:5917–5925

    Article  CAS  Google Scholar 

  • Bending GD, Lincoln SD, Edmondson RN (2006) Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ Pollut 139:279–287

    Article  CAS  Google Scholar 

  • Burrows HD, Canle LM, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B Biol 67:71–108

    Article  CAS  Google Scholar 

  • Cao J, Guo H, Zhu HM, Jiang L, Yang H (2008) Effects of SOM, surfactant and pH on the sorption–desorption and mobility of prometryne in soils. Chemosphere 70:2127–2134

    Article  CAS  Google Scholar 

  • Chai LK, Wong MH, Mohd-Tahir N, Hansen HCB (2010) Degradation and mineralization kinetics of acephate in humid tropic soils of Malaysia. Chemosphere 79:434–440

    Article  CAS  Google Scholar 

  • Chatterjee NS, Gupta S, Varghese E (2013) Degradation of metaflumizone in soil: impact of varying moisture, light, temperature, atmospheric CO2 level, soil type and soil sterilization. Chemosphere 90:729–736

    Article  CAS  Google Scholar 

  • Chowdhury A, Pradhan S, Saha M, Sanyal N (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J Microbiol 48:114–127

    Article  CAS  Google Scholar 

  • Das SK, Mukherjee I (2011) Effect of light and pH on persistence of flubendiamide. Bull Environ Contam Toxicol 87:292–296

    Article  CAS  Google Scholar 

  • Dimou AD, Sakkas VA, Albanis TA (2004) Trifluralin photolysis in natural waters and under the presence of isolated organic matter and nitrate ions: kinetics and photoproduct analysis. J Photochem Photobiol A Chem 163:473–480

    Article  CAS  Google Scholar 

  • Ding Q, Wu HL, Xu Y, Guo LJ, Liu K, Gao HM, Yang H (2011) Impact of low molecular weight organic acids and dissolved organic matter on sorption and mobility of isoproturon in two soils. J Hazard Mater 190:823–832

    Article  CAS  Google Scholar 

  • Dong DB, Li PJ, Li XJ, Zhao Q, Zhang YQ, Jia CY, Li P (2010) Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J Hazard Mater 174:859–863

    Article  CAS  Google Scholar 

  • Fang H, Yu YL, Chu XQ, Wang XG, Yang XE, Yu JQ (2009) Degradation of chorpyrifos in laboratory soil and its impact on soil microbial functional diversity. J Environ Sci 21:380–386

    Article  CAS  Google Scholar 

  • Gonçalves C, Dimou A, Sakkas V, Alpendurada MF, Albains TA (2006) Photolytic degradation of quinalphos in natural waters and on soil matrices under simulated solar irradiation. Chemosphere 64:1375–1382

    Article  Google Scholar 

  • González-López N, Rial-Otero R, Cancho-Grande B, Simal-Gándara J, Soto-González B (2005) Occurrence of organochlorine pesticides in stream sediments from an industrial area. Arch Environ Contam Toxicol 48(3):296–302

    Article  Google Scholar 

  • González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2008) Occurrence of fungicide and insecticide residues in trade samples of leafy vegetables. Food Chem 107:1342–1347

    Article  Google Scholar 

  • Gundi VAKB, Reddy BR (2006) Degradation of monocrotophos in soils. Chemosphere 62:396–403

    Article  CAS  Google Scholar 

  • Guo L, Jury WA, Wagenet RJ, Flury M (2000) Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors. J Contam Hydrol 43:45–62

    Article  CAS  Google Scholar 

  • Guo C, Li DH, Chen JH, Guo BY, Wang HL, Li JZ (2010) Degradation of furan tebufenozide in laboratory and field trials. Sci China Chem 53:1818–1824

    Article  CAS  Google Scholar 

  • Gupta G, Bhaskaran H (2004) Use of poultry litter for biodegradation of soil contaminated with 2,4- and 2,6-dinitrotoluene. J Hazard Mater 116:167–171

    Article  CAS  Google Scholar 

  • Gupta S, Gajbhiye VT, Gupta RK (2008) Effect of light on the degradation of two neonicotinoids viz acetamiprid and thiacloprid in soil. Bull Environ Contam Toxicol 81:185–189

    Article  CAS  Google Scholar 

  • Hong Q, Zhang ZH, Hong YF, Li SP (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkhoideria sp. FDS-1. Int Biodeter Biodegr 59:55–61

    Article  CAS  Google Scholar 

  • Huang WL, Yu H, Weber WJ (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments: 1. A comparative analysis of experimental protocols. J Contam Hydrol 31:129–214

    Article  CAS  Google Scholar 

  • Jung H, Sohn KD, Neppolian B, Choi H (2008) Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in integrated ozonation and biodegradation. J Hazard Mater 150:809–817

    Article  CAS  Google Scholar 

  • Kahle M, Kleber M, Jahn R (2004) Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties. Organic Geochem 35:269–276

    Article  CAS  Google Scholar 

  • Kurola J, Salkinoja-Salonen M (2007) Potential for biodegradation of anthropogenic organic compounds at low temperature in boreal soils. Soil Biol Biochem 39:1206–1212

    Article  CAS  Google Scholar 

  • Maheswari ST, Ramesh A (2007) Adsorption and degradation of sulfosulfuron in soils. Environ Monit Assess 127:97–103

    Article  CAS  Google Scholar 

  • Martinez CO, de Souza Silva CMM, Fay EF, Abakerli RB, de Holanda Nunes Maia A, Durrant LR (2008) The effects of moisture and temperature on the degradation of sulfentrazone. Geoderma 147:56–62

    Article  CAS  Google Scholar 

  • Martínez C, Vilariño S, Fernández MI, Faria J, Canle ML, Santaballa JA (2013) Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution. Appl Catal B Environ 142–143:633–646

    Article  Google Scholar 

  • Noguerol-Pato R, González-Rodríguez RM, González-Barreiro C, Cancho-Grande B, Simal-Gándara J (2011) Influence of tebuconazole residues on the aroma composition of Mencía red wines. Food Chem 124(1):1525–1532

    Article  CAS  Google Scholar 

  • OECD (2000) Guidelines for the testing of chemicals. Test No. 106: Adsorption desorption using a batch equilibrium method. OECD Organisation for Economic Co-Operation and Development, Paris

    Book  Google Scholar 

  • Ohshiro K, Kakuta T, Sakai T, Hirota H, Hoshino T, Uchiyama T (1996) Biodegradation of organophosphorus insecticides by bacteria isolated from turf green soil. J Ferment Bioeng 82:299–305

    Article  CAS  Google Scholar 

  • Pateiro-Moure M, Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J (2008) Occurrence and downslope mobilization of quaternary herbicide residues in vineyard-devoted soils. Bull Environ Contam Toxicol 80(5):407–411

    Article  CAS  Google Scholar 

  • Pateiro-Moure M, Pérez-Novo C, Arias-Estévez M, Rial-Otero R, Simal-Gándara J (2009a) Effect of organic matter and iron oxides on quaternary herbicide sorption–desorption in vineyard-devoted soils. J Colloid Interface Sci 333(2):431–438

    Article  CAS  Google Scholar 

  • Pateiro-Moure M, Nóvoa-Muñoz JC, Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J (2009b) Quaternary herbicides retention by the amendment of acid soils with a bentonite-based waste from wineries. J Hazard Mater 164(2–3):769–775

    Article  CAS  Google Scholar 

  • Pu XC, Cutright TJ (2006) Sorption–desorption behavior of PCP on soil organic matter and clay minerals. Chemosphere 64:972–983

    Article  CAS  Google Scholar 

  • Quan X, Zhao X, Chen S, Zhao HM, Chen JW, Zhao YZ (2005) Enhancement of p, p’-DDT photodegradation on soil surfaces using TiO2 induced by UV-light. Chemosphere 60:266–273

    Google Scholar 

  • Rial-Otero R, González-Rodríguez RM, Cancho-Grande B, Simal-Gándara J (2004) Parameters affecting extraction of selected fungicides from vineyard soils. J Agric Food Chem 52(24):7227–7234

    Article  CAS  Google Scholar 

  • Sánchez ME, Estrada IB, Martínez O, Martín-Villacorta J, Aller A, Morán A (2004) Influence of the application of sewage sludge on the degradation of pesticides in the soil. Chemosphere 57:673–679

    Article  Google Scholar 

  • Seiber JN, Kleinschmidt LA (2011) Contributions of pesticide residue chemistry to improving food and environmental safety: past and present accomplishments and future challenges. J Agric Food Chem 59:7536–7543

    Article  CAS  Google Scholar 

  • Shabir G, Afzal M, Anwar F, Tahseen R, Khalid ZM (2008) Biodegradation of kerosene in soil by a mixed bacterial culture under different nutrient conditions. Int Biodeterior Biodegrad 61:161–166

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effects of Soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206

    Article  CAS  Google Scholar 

  • Song BA, Jin LH, Yang S, Bhadury PS. (2010) Innovation and Application of Environment-Friendly Antiviral Agents for Plants. Environment-Friendly Antiviral Agents for Plants. Springer Berlin Heidelberg, pp 207–300

  • Tao L, Yang H (2011) Fluroxypyr biodegradation in soils by multiple factors. Environ Monit Assess 175:227–238

    Article  CAS  Google Scholar 

  • van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96

    Article  Google Scholar 

  • Vischetti C, Corti G, Monaci E, Cocco S, Coppola L, Agnelli A (2010) Pesticide adsorption and degradation in fine earth and rock fragments of two soils of different origin. Geoderma 154:348–352

    Article  CAS  Google Scholar 

  • Walker A, Jurado-Exposito M, Bending GD, Smith VJR (2001) Spatial variability in the degradation rate of isoproturon in soil. Environ Pollut 111:407–415

    Article  CAS  Google Scholar 

  • Weber WJ, Huang WL, Yu H (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments: 2. Effects of soil organic matter heterogeneity. J Contam Hydrol 31:149–165

    Article  CAS  Google Scholar 

  • Zavala MAL, Funamizu N, Takakuwa T (2004) Temperature effect on aerobic biodegradation of feces using sawdust as a matrix. Water Res 38:2406–2416

    Article  Google Scholar 

  • Zhang KK, Hu DY, Zhu HJ, Yang JC, Wu J, He M, Jin LH, Yang S, Song BA (2013) Enantioselective hydrolyzation and photolyzation of dufulin in water. Chem Central J 7:86–94

    Article  Google Scholar 

  • Zhu GN, Wu HM, Guo JF, Kimaro FME (2004) Microbial degradation of fipronil in clay loam soil. Water Air Soil Pollut 153:35–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Special Fund for Agro-scientific Research in the Public Interest (No. 201203022) from the Ministry of Agriculture of China for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 51 kb)

Table S2

(DOC 32 kb)

Table S3

(DOC 31 kb)

Table S4

(DOC 39 kb)

Table S5

(DOC 43 kb)

Table S6

(DOC 43 kb)

Table S7

(DOC 39 kb)

Table S8

(DOC 39 kb)

Table S9

(DOC 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H.Z., Zuo, H.G., Ding, Y.J. et al. Biotic and abiotic degradation of pesticide Dufulin in soils. Environ Sci Pollut Res 21, 4331–4342 (2014). https://doi.org/10.1007/s11356-013-2380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2380-8

Keywords

Navigation