Skip to main content

Advertisement

Log in

Self-potential monitoring of a crude oil-contaminated site (Trecate, Italy)

  • New approaches for low-invasive contaminated site characterization, monitoring and modelling
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We present a multidisciplinary approach for characterization of a crude oil-contaminated site (Trecate, Italy), integrating geophysical data, such as subsoil electrical potential (in millivolts) and electrical resistivity (in ohm meters) distribution, with hydrogeological and bio-chemical data. Self-potential measurements have been evaluated together with active geoelectrical measurements and hydrological information, to provide spatial and temporal information about the self-potential sources and their possible correlations with the contamination state of the subsoil. Three self-potential surveys (March 2010, October 2010, and March 2011) were conducted at the site, both in the contaminated and uncontaminated regions. The obtained self-potential maps show large time-lapse differences in correspondence of the contaminated area, with positive electrical potential values (up to 50 mV) in spring surveys and an electrical potential dipolar distribution in October (2010) survey (amplitude from −15 to 25 mV). To understand the origin of the measured self-potential signals, a model using vertical dipolar electrical sources was built, taking into account the electrical resistivity distribution deduced from electrical resistivity tomography. The self-potential source identification allows the Trecate contamination state to be better delineated. In particular, two self-potential contributions are superimposed: the electrokinetic mechanism is predominant in spring, while the redox mechanism represents the most important contribution in autumn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allègre V, Jouniaux L, Lehmann F, Sailhac P (2010) Streaming potential dependence on water-content in Fontainebleau sand. Geophys J Int 182:1248–1266

    Article  Google Scholar 

  • Allègre V, Jouniaux L, Lehmann F, Sailhac P (2011) Reply to the comment by A. Revil and N. Linde on: "Streaming potential dependence on water-content in Fontainebleau sand" by Allègre et al. Geophys J Int 186:115–117

    Article  Google Scholar 

  • Allègre V, Lehmann F, Ackerer P, Jouniaux L, Sailhac P (2012) Modelling the streaming potential dependence on water content during drainage: 1. A 1D modeling of SP using finite element method. Geophys J Int 189:285–295

    Article  Google Scholar 

  • Archie GE (1942) Electrical resistivity log as an aid in determining some reservoir characteristics. Am Inst Min Metall Pet Eng 146:54–62

    Google Scholar 

  • Arora T, Linde N, Revil A, Castermant J (2007) Non-intrusive characterization of the redox potential of landfill leachate plumes from self-potential data. J Contam Hydrol 92:274–292

    Article  CAS  Google Scholar 

  • Atekwana EA, Atekwana E (2010) Geophysical signature of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31:247–283

    Article  Google Scholar 

  • Atekwana EA, Sauck WA, Werkema DD (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J Appl Geophys 44:167–180

    Article  Google Scholar 

  • Atekwana EA, Atekwana E, Legall FD, Krishnamurthy RV (2004) Field evidence for geophysical detection of subsurface zones of enhanced microbial activity. Geophys Res Lett 31:L23503

    Google Scholar 

  • Atekwana E, Werkema D, Atekwana E (2006) Biogeophysics: the effects of microbial processes on geophysical properties of the shallow subsurface. Appl Hydrogeophys NATO Sci Ser 71:161–193

    Article  Google Scholar 

  • Azadpour-Keeley A, Russell HH, Sewell GW (1999) Microbial processes affecting monitored natural attenuation of contaminants in the subsurface. EPA/540/S-99/001

  • Bavusi M, Rizzo E, Lapenna V (2006) Electromagnetic methods to characterize the savoia di lucania waste dump (southern Italy). Environ Geol 51:301–308

    Article  CAS  Google Scholar 

  • Bigalke J, Grabner E (1997) The geobattery model: a contribution to large scale electrochemistry. Electrochim Acta 42(23–24):3443–3452

    Article  CAS  Google Scholar 

  • Bikerman JJ (1933) Ionentheorie der Elektroosmose, der Strömungsströme und der Oberflächenleitfähigkeit. Z Phys Chem A 163:378–394

    Google Scholar 

  • Bikerman JJ (1935) Die Oberflächenleitfähigkeit und ihre Bedeutung. Kolloidchem Z 72:100–108

    Article  CAS  Google Scholar 

  • Bockris J, Reddy AKN (2000) Modern electrochemistry. Plenum Press, New York

    Google Scholar 

  • Bolève A, Crespy A, Revil A, Janod F, Mattiuzzo JL (2007a) Streaming potentials of granular media: influence of the Dukhin and Reynolds numbers. J Geophys Res 112:B08204. doi:10.1029/2006JB004673

    Google Scholar 

  • Bolève A, Revil A, Janod F, Mattiuzzo JL, Jardani A (2007b) Forward modeling and validation of a new formulation to compute self-potential signals associated with ground water flow. Hydrol Earth Syst Sci 11:1–11

    Article  Google Scholar 

  • Brandt CA, Becker JM, Porta A (2002) Distribution of polycyclic aromatic hydrocarbons in soils and terrestrial biota after a spill of crude oil in Trecate, Italy. Environ Toxicol Chem 21(8):1638–1643

    Article  CAS  Google Scholar 

  • Burbery L, Cassiani G, Andreotti G, Ricchiuto T, Semple KT (2004) Single-well reactive tracer test and stable isotope analysis for determination of microbial activity in a fast hydrocarbon contaminated aquifer. Environ Pollut 129:321–330. doi:10.1016/j.envpol.2003.10.017

    Article  CAS  Google Scholar 

  • Canton M, Anschutz P, Naudet V, Molnar N, Mouret A, Franceschi M, Naessens F, Poirier D (2010) Impact of solid waste disposal on nutrient dynamics in a sandy catchment. J Contam Hydrol 116:1–15

    Article  CAS  Google Scholar 

  • Cassiani G, Strobbia C, Gallotti L (2004) Vertical radar profiles for the characterization of deep vadose zones. Vadose Zone J 3:1093–1105

    Article  Google Scholar 

  • Cassiani G, Binley A, Kemna A, Flores Orozco A, Rizzo E, Bruno V, Deiana R, El-Kaliouby H, Dietrich P, Zschornack L, Leven C (2010) Integrated geophysical characterization of a hydrocarbon contaminated site. Near Surface 2010 – 16th European Meeting of Environmental and Engineering Geophysics Zurich, Switzerland, 6–8 September 2010

  • Chambers JE, Meldrum PI, Ogilvy RD, Wilkinson PB (2005) Characterization of a NAPL-contaminated former quarry site using electrical impedance tomography. Near Surf Geophys 3:79–90

    Article  Google Scholar 

  • Che-Alota V, Atekwana EA, Atekwana EA, Sauck WA, Werkema DD (2009) Temporal geophysical signatures due to contaminant mass reduction. Geophysics 74. doi: 10.1190/1.3139769

  • Crespy A, Bolève A, Revil A (2007) Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular porous media. J Colloid Interface Sci 305:188–194

    Article  CAS  Google Scholar 

  • Daily W, Ramirez A (1995) Electrical resistance tomography during in-situ trichloroethylene remediation at the Savannah River site. J Appl Geophys 33:239–249

    Article  Google Scholar 

  • Darnet M, Marquis G (2004) Modelling streaming potential (SP) signals induced by water movement in the vadose zone. J Hydrol 285:114–124

    Article  Google Scholar 

  • Davis JA, James RO, Leckie J (1978) Surface ionization and complexation at the oxide/water interface. J Colloid Interface Sci 63:480–499

    Article  CAS  Google Scholar 

  • de Groot SR (1951) Thermodynamics of irreversible processes. Elsevier, New York

    Google Scholar 

  • Dietrich P, Leven C (2006) Direct push-technologies. In: Kirsch R (ed) Groundwater Geophysics. Springer, Berlin, pp 321–340

    Chapter  Google Scholar 

  • Doherty R, Kulessa B, Ferguson AS, Larkin MJ, Kulakov LA, Kalin RM (2010) A microbial fuel cell in contaminated ground delineated by electrical self-potential and normalized induced polarization data. J Geophys Res 115:G00G08. doi:10.1029/2009JG001131

    Google Scholar 

  • Ennis J, White LR (1996) Dynamic stern layer contribution to the frequency-dependent mobility of a spherical colloid particle—a low-zeta-potential analytic solution. J Colloid Interface Sci 178(2):446–459

    Article  CAS  Google Scholar 

  • Fachin SJS, Abreu EL, Mendonça CA, Revil A, Novaes GC, Vasconcelos SS (2012) Self-potential signals from an analog biogeobattery model. Geophysics 77(4):EN29–EN37

    Article  Google Scholar 

  • Fernandez-Martinez J, Garcia-Gonzalo E, Naudet V (2010) Particle swarm optimization applied to solving and appraising the streaming potential inverse problem. Geophysics 75:WA3–WA15

    Article  Google Scholar 

  • Forté SA, Bentley LR (2013a) Effect of hydrocarbon contamination on streaming potential. Near Surf Geophys 1(11):75–83

    Google Scholar 

  • Forté SA, Bentley LR (2013b) Mapping degrading hydrocarbon plumes with self-potentials: investigation on causative mechanisms using field and modeling data. J Environ Eng Geophys 18(1):27–42

    Article  Google Scholar 

  • Godio A, Arato A, Stocco S (2010) Geophysical characterization of a nonaqueous-phase liquid-contaminated site. Environ Geosci 17(4):141–161

    Google Scholar 

  • Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501

    Article  CAS  Google Scholar 

  • Greco G (2006) Mesocosm - Technical manual. CRdC-AMRA 16/i, Ed. Doppiavoce, pp. 18

  • Greenhouse J, Brewster M, Schneider G, Redman D, Annan P, Olhoeft G, Lucius J, Sander K, Mazzella A (1993) Geophysics and Solvents: The Borden Experiment. The Leading Edge, April 1993, 261267

  • Hubbard C, West LJ, Morris K, Kulessa B, Brookshaw D, Lloyd J, Shaw S (2011) In search of experimental evidence for the biogeobattery. J Geophys Res Biogeosci 116:G04018

    Article  Google Scholar 

  • Ikard SJ, Revil A, Jardani A, Woodruff WF, Parekh M, Mooney M (2012) Saline pulse test monitoring with the self-potential method to non-intrusively determine the velocity of the pore water in leaking areas of earth dams and embankments. Water Resour Res 48:W04201. doi:10.1029/2010WR010247

    Article  Google Scholar 

  • Jackson MD (2008) Characterization of multiphase electrokinetic coupling using a bundle of capillary tubes model. J Geophys Res 113:B04201

    Google Scholar 

  • Jackson MD (2010) Multiphase electrokinetic coupling: Insights into the impact of fluid and charge distribution at the pore scale from a bundle of capillary tubes model. J Geophys Res 115:B07206

    Google Scholar 

  • Jardani A, Revil A (2009) Stochastic joint inversion of temperature and self-potential data. Geophys J Int 179(1):640–654. doi:10.1111/j.1365-246X.2009.04295.x

    Article  Google Scholar 

  • Jardani A, Revil A, Bolève A, Dupont JP, Barrash W, Malama B (2007) Tomography of the Darcy velocity from self-potential measurements. Geophys Res Lett 34:L24403. doi:10.1029/2007GL031907

    Article  Google Scholar 

  • Jardani A, Revil A, Barrash W, Crespy A, Rizzo E, Straface S, Cardiff M, Malama B, Miller C, Johnson T (2009) Reconstruction of the water table from self potential data: A Bayesian approach. Ground Water 47(2):213–227

    Article  CAS  Google Scholar 

  • Jardani A, Dupont JP, Revil A, Massei N, Fournier M, Laignel B (2012) Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence. J Hydrol 472–473:287–300

    Article  Google Scholar 

  • Jougnot D, Linde N, Revil A, Doussan C (2012) Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils. Vadose Zone J 11(1):272–286

    Article  Google Scholar 

  • Jouniaux L, Ishido T (2012) Electrokinetics in Earth Sciences: a tutorial. Int J Geophys 2012:1–16

    Google Scholar 

  • Jouniaux L, Maineult A, Naudet V, Pessel M, Sailhac P (2009) Review of self-potential methods in hydrogeophysics. Compt Rendus Geosci. doi:10.1016/j.crte.2009.08.008

    Google Scholar 

  • Lendvay JM, Sauck WA, McCormik ML, Barcelona MJ, Kampbel DH, Wilson JT, Adriaens P (1998) Geophysical characterization, redox zonations, and contaminant distribution at groundwater/surface water interface. Water Resour Res 34:3545–3559

    Article  CAS  Google Scholar 

  • Linde N, Revil A (2007) Inverting self-potential data for redox potentials of contaminant plumes. Geophys Res Lett 34:L14302. doi:10.1029/2007GL030084

    Article  Google Scholar 

  • Linde N, Doetsch J, Jougnot D, Genoni O, Dürst Y, Minsley BJ, Vogt T, Pasquale N, Luster J (2010) Self-potential investigations of a gravel bar in a restored river corridor. Hydrol Earth Syst Sci Discuss 7:8987–9021

    Article  Google Scholar 

  • Maineult A, Bernabé Y, Ackerer P (2005) Detection of advected concentration and pH fronts from self-potential measurements. J Geophys Res 110:B11205

    Article  Google Scholar 

  • Maineult A, Jouniaux L, Bernabé Y (2006) Influence of the mineralogical composition on the self-potential response to advection of KCl concentration fronts through sand. Geophys Res Lett 33(24):L24311

    Article  Google Scholar 

  • Martinez-Pagan P, Jardani A, Revil A, Haas A (2010) Self-potential monitoring of a salt plume. Geophysics 75:17–25

    Article  Google Scholar 

  • Mauri G, Williams-Jones G, Saracco G (2010) Depth determinations of shallow hydrothermal system by self-potential and multi-scale wavelet tomography. J Volcanol Geotherm Res 191:233–244

    Article  CAS  Google Scholar 

  • Minsley BJ, Sogade J, Morgan FD (2007) Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina. Water Resour Res 43:W04429. doi:10.1029/2005WR003996

    Article  Google Scholar 

  • Naudet V (2004) Les méthodes de résistivité électrique et de potentiel spontané appliquées aux sites contaminés. Université Paul Cézanne, Aix-Marseille, France, PhD dissertation

  • Naudet V, Revil A (2005) A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophys Res Lett 32:L11405. doi:10.1029/2005GL022735

    Article  Google Scholar 

  • Naudet V, Revil A, Bottero JY, Begassat P (2003) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30(21):2091. doi:10.1029/2003GL018096

    Article  Google Scholar 

  • Naudet V, Revil A, Rizzo E, Bottero JY, Begassat P (2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrol Earth Syst Sci 8(1):8–22

    Article  CAS  Google Scholar 

  • Newell C, Acree SD, Ross RR, Huling SG (1995) Light nonaqueous phase liquids. EPA/540/S-95/500

  • Nourbehecht B (1963) Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectric problems. Ph.D. thesis. Mass Inst of Technol, Cambridge, Mass

  • Ntarlagannis D, Atekwana E, Hill E, Gorby Y (2007) Microbial nanowires: is the subsurface “hardwired”? Geophys Res Lett 34:L17305

    Article  Google Scholar 

  • Nyquist J, Corry C (2002) Self-potential: the ugly duckling of environmental geophysics. Lead Edge 21(5):446–451

    Article  Google Scholar 

  • Onsager L (1931) Reciprocal relations in irreversible processes, I. Phys Rev 37:405–426. doi:10.1103/PhysRev.37.405

    Article  CAS  Google Scholar 

  • Perrier F, Morat P (2000) Characterization of electrical daily variations induced by capillary flow in the non-saturated zone. Pure Appl Geophys 157:785–810

    Article  Google Scholar 

  • Petiau G (2000) Second generation of lead–lead chloride electrodes for geophysical applications. Pure Appl Geophys 157:357–382

    Article  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348

    Article  CAS  Google Scholar 

  • Reisinger HJ, Mountain SA, Andreotti G, DiLuise G, Porta A, Hullman AS, Owens V, Arlotti D, Godfrey J (1996) Bioremediation of a major inland oil spill using a comprehensive integrated approach. In Proceedings of the 3rd International Symposium of Environmental Contamination in Central & Eastern Europe, Warsaw, 10–13 September

  • Revil A (1999) Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: a unified model. J Colloid Interface Sci 212:503–522

    Article  CAS  Google Scholar 

  • Revil A, Cerepi A (2004) Streaming potentials in two-phase flow conditions. Geophys Res Lett 31:L11605

    Article  Google Scholar 

  • Revil A, Glover PWJ (1997) Theory of ionic surface electrical conduction in porous media. Phys Rev B 55(3):1757–1773

    Article  CAS  Google Scholar 

  • Revil A, Leroy P (2004) Constitutive equations for ionic transport in porous shales. J Geophys Res 109:B03208

    Google Scholar 

  • Revil A, Linde N (2006) Chemico-electromechanical coupling in microporous media. J Colloid Interface Sci 302:682–694

    Article  CAS  Google Scholar 

  • Revil A, Mahardika H (2013) Coupled hydromechanical and electromagnetic disturbances in unsaturated clayey materials. Water Resour Res 49:1–23. doi:10.1002/wrcr.20092

    Article  Google Scholar 

  • Revil A, Hermitte D, Voltz M, Moussa R, Lacas JG, Bourrié G, Trolard F (2002). Self-potential signals associated with variations of the hydraulic head during infiltration experiment. Geophys Res Lett 29(7). doi:10.1029/2001GL014294

  • Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5):1114. doi:10.1029/2001WR000916

    Article  Google Scholar 

  • Revil A, Linde N, Cerepi A, Jougnot D, Matthäi SK, Finsterle S (2007) Electrokinetic coupling in unsaturated porous media. J Colloid Interface Sci 313(1):315–327

    Article  CAS  Google Scholar 

  • Revil A, Trolard F, Bourrié G, Castermant J, Jardani A, Mendonça CA (2009) Ionic contribution to the self-potential signals associated with a redox front. J Contam Hydrol 109:27–39

    Article  CAS  Google Scholar 

  • Revil A, Mendonca CA, Atekwana EA, Kulessa B, Hubbard SS, Bohlen KJ (2010) Understanding biogeobatteries: where geophysics meets microbiology. J Geophys Res 115:G00G02. doi:10.1029/2009JG001065

    Google Scholar 

  • Rizzo E, Suski B, Revil A, Straface S, Troisi S (2004) Self-potential signals associated with pumping-tests experiments. J Geophys Res 109:B10203. doi:10.1029/2004JB003049

    Article  Google Scholar 

  • Sato M, Mooney HM (1960) The electrochemical mechanism of sulfide self-potentials. Geophysics 25(1):226–249

    Article  CAS  Google Scholar 

  • Saunders JH, Jackson MD, Pain CC (2008) Fluid flow monitoring in oil fields using downhole measurements of electrokinetic potential. Geophysics 73:E165–E180

    Article  Google Scholar 

  • Schädler S, Morio M, Bartke S, Finkel M (2012) Integrated planning and spatial evaluation of megasite remediation and reuse options. J Contam Hydrol 127(1–4):88–100

    Article  Google Scholar 

  • Shi W (1998) Advanced modelling and inversion techniques for three dimensional geoelectrical surveys. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass

  • Shilov VN, Delgado AV, Gonzalez-Caballero F, Grosse C (2001) Thin double layer theory of the wide-frequency range dielectric dispersion of suspensions of non-conducting spherical particles including surface conductivity of the stagnant layer. Colloid Surface A 192(1–3):253–265

    Article  CAS  Google Scholar 

  • Sill WR (1983) Self-potential modeling from primary flows. Geophysics 48(1):76–86

    Article  Google Scholar 

  • Thony JL, Morat P, Vachaud G, Mouel JLL (1997) Field characterization of the relationship between electrical potential gradients and soil water flux. CR Acad Sci Paris Ser IIa 325:317–321

    CAS  Google Scholar 

  • Titov K, Ilyin Y, Konosavski P, Levitski A (2002) Electrokinetic spontaneous polarization in porous media: petrophysics and numerical modeling. J Hydrol 267(3):207–216

    Article  Google Scholar 

  • Titov K, Ilyin Y, Konosavsky P, Muslimov A, Rybalchenko O, Orlova O, Maineult A (2012) Physical properties of unsaturated oil-contaminated sand affected by microbial activity Extended abstracts EAGE Conference and Exhibition, St. Petersburg, April 2 – 5, 2012

  • Vinogradov J, Jackson M (2011) Multiphase streaming potential in sandstones saturated with gas/brine and oil/brine during drainage and imbibition. Geophys Res Lett 38:L01301

    Article  Google Scholar 

  • Waxman MH, Thomas EC (1974) Electrical conductivities in Shaly Sands-I. The relation between hydrocarbon saturation and resistivity index; II. The temperature coefficient of electrical conductivity. J Pet Technol 26(2):213–225

    Article  CAS  Google Scholar 

  • Zukowski CF, Saville DA (1986) The interpretation of electrokinetic measurements using a dynamic model of the stern layer I. Comparisons between theory and experiment. J Colloid Interface Sci 114:45–53

    Article  Google Scholar 

Download references

Acknowledgments

The work is a part of the research project ModelPROBE (Model-Driven soil probing, site assessment and evaluation, Grant No. 213161 in the framework of the EC-FP7 funded). The authors thank Matthias Kastner and Giorgio Cassiani for their efforts in the project coordination. The authors also thank the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rizzo.

Additional information

Responsible editor: Michael Matthies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giampaolo, V., Rizzo, E., Titov, K. et al. Self-potential monitoring of a crude oil-contaminated site (Trecate, Italy). Environ Sci Pollut Res 21, 8932–8947 (2014). https://doi.org/10.1007/s11356-013-2159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2159-y

Keywords

Navigation