Skip to main content

Advertisement

Log in

Mercury in the Mediterranean. Part 2: processes and mass balance

  • Heavy Metals in the Environment : Sources, Interactions and Human Health
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mass balance of contaminants can provide useful information on the processes that influence their concentrations in various environmental compartments. The most important sources, sinks and the equilibrium or non-equilibrium state of the contaminant in individual environmental compartments can also be identified. Using the latest mercury speciation data, the results of numerical models and the results of recent studies on mercury transport and transformation processes in the marine environment, we have re-evaluated the total mercury (HgT) mass balance in the Mediterranean Sea. New calculations have been performed employing three distinct marine layers: the surface layer, the thermocline and the deep sea. New transport mechanisms, deep water formation and density-driven sinking and upwelling, were included in the mass balance calculations. The most recent data have even enabled the calculation of an approximate methylmercury (MeHg) mass balance. HgT is well balanced in the entire Mediterranean, and the discrepancies between inputs and outputs in individual layers do not exceed 20 %. The MeHg balance shows larger discrepancies between gains and losses due to measurement uncertainties and gaps in our knowledge of Hg species transformation processes. Nonetheless, the main sources and sinks of HgT (deposition and evasion) and MeHg (fluxes from sediment, outflow through the Gibraltar Strait) are in accordance with previous studies on mercury in the Mediterranean Basin. Mercury in the Mediterranean fish harvest is the second largest MeHg sink; about 300 kg of this toxic substance is consumed annually with sea food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson M, Gårdfeldt K, Wängberg I, Sprovieri F, Pirrone N, Lindqvist O (2007) Seasonal and daily variation of mercury evasion at coastal and offshore sites from the Mediterranean Sea. Mar Chem 104(3–4):214–226

    Article  CAS  Google Scholar 

  • Bakun A, Agostini VN (2001) Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea. Sci Mar 65(3):243–257

    Article  Google Scholar 

  • Benoit G, Comeau A (eds) (2005) A sustainable future for the Mediterranean: the Blue Plan's environment and development outlook. Taylor & Francis, New York

    Google Scholar 

  • Bernhard M, Buffoni G (1982) Mercury in the Mediterranean, an overview. In: Proceedings of the International Conference on Environmental Pollution 1981, University of Thessaloniki, pp 458–484

  • Boukthir M, Barnier B (2000) Seasonal and inter-annual variations in the surface freshwater flux in the Mediterranean Sea from the ECMWF re-analysis project. J Mar Syst 24(34):343–354

    Article  Google Scholar 

  • Bratkič A, Ogrinc N, Kotnik J, Faganeli J, Žagar D, Yano S, Tada A, Horvat M (2013) Mercury speciation driven by seasonal changes in a contaminated estuarine environment. Environmental Research. doi:10.1016/j.envres.2013.01.004

    Google Scholar 

  • Bryden HL (2009) Where does the new mediterranean deep water go? In: Briand F (ed) Dynamics of Mediterranean deep waters. No. 38 in CIESM Workshop Monographs, CIESM, 16 bd de Suisse, MC-98000, Monaco

  • Chen C, Amirbahman A, Fisher N, Harding G, Lamborg C, Nacci D, Taylor D (2008) Methylmercury in marine ecosystems: spatial patterns and processes of production, bioaccumulation, and biomagnification. Eco Health 5(4):399–408

    Google Scholar 

  • Cinnirella S, March D, O'Higgins T, Murciano C, Sardà R, Albaigés J, Pirrone N (2012) A multidisciplinary spatial data infrastructure for the Mediterranean to support the implementation of the Marine Strategy Framework Directive. International Journal of Spatial Data Infrastructures Research 7:323–351, Online at: http://ijsdir.jrc.ec.europa.eu

    Google Scholar 

  • Cinnirella S, Graziano M, Pon J, Murciano C, Albaigés J, Pirrone N (2013a) Integrated assessment of chemical pollution in the Mediterranean Sea: driver-pressures-state-welfare analysis. Ocean Coast Manag 80:36–45

    Article  Google Scholar 

  • Cinnirella S, Pirrone N, Horvat M, Kocman D, Kotnik J (2013b) Mercury bioaccumulation in the Mediterranean. EPJ Web of Conferences. ISSN: 2100-014X

  • Coquery M, Cossa D, Sanjuan J (1997) Speciation and sorption of mercury in two macro-tidal estuaries. Mar Chem 58(1–2):213–227

    Article  CAS  Google Scholar 

  • Cossa D, Coquery M (2005) The Mediterranean mercury anomaly, a geochemical or a biological issue. In: Saliot A (ed) The Mediterranean Sea, handbook of environmental chemistry, vol 5K. Springer, Berlin, pp 177–208

    Google Scholar 

  • Cossa D, Martin JM, Takayanagi K, Sanjuan J (1997) The distribution and cycling of mercury species in the Western Mediterranean. Deep-Sea Res II Top Stud Oceanogr 44(3–4):721–740

    Article  CAS  Google Scholar 

  • Cossa D, Averty B, Pirrone N (2009) The origin of methylmercury in open Mediterranean waters. Limnol Oceanogr 54(5):837–844

    Article  CAS  Google Scholar 

  • Covelli S, Faganeli J, Horvat M, Brambati A (1999) Porewater distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuarine Coastal Shelf Sci 48(4):415–428

    Article  CAS  Google Scholar 

  • Covelli S, Faganeli J, De Vittor C, Predonzani S, Acquavita A, Horvat M (2008) Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy). Appl Geochem 23(3):529–546

    Article  CAS  Google Scholar 

  • De Simone F, Gencarelli CN, Hedgecock IM, Pirrone N (2013) Global atmospheric cycle of mercury: a model study of the impact of oxidation mechanisms. Environ Sci Pollut Res (in this issue)

  • EFSA (2012) Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal 10(12):2985. doi:10.2903/j.efsa.2012.2985

    Google Scholar 

  • Emili A, Koron N, Covelli S, Faganeli J, Acquavita A, Predonzani S, Vittor CD (2011) Does anoxia affect mercury cycling at the sediment water interface in the Gulf of Trieste (Northern Adriatic Sea)? Incubation experiments using benthic flux chambers. Appl Geochem 26(2):194–204

    Article  CAS  Google Scholar 

  • FAO (2010a) GFCM:XXXIV/2010/Dma.2: fish trade of Mediterranean countries: Intraregional trade and import–export with the European union. GFCM Studies and Reviews No. 86. Rome, FAO. 2010

  • FAO (2010b) GFCM:XXXIV/2010/Dma.5: regional synthesis of the Mediterranean marine finfish aquaculture sector and development of a strategy for marketing and promotion of Mediterranean aquaculture. GFCM Studies and Reviews No. 88. Rome, FAO. 2010

  • FAOSTAT (2013) FAO yearbook 2010: fishery and aquaculture statistics. Available at http://www.fao.org/fishery/publications/yearbooks/en. Accessed 10 Mar 2013

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107(2):641–662

    Article  CAS  Google Scholar 

  • Gårdfeldt K, Sommar J, Ferrara R, Ceccarini C, Lanzillotta E, Munthe J, Wängberg I, Lindqvist O, Pirrone N, Sprovieri F, Pesenti E, Stromberg D (2003) Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmos Environ 37(Supplement 1):73–84

    Article  Google Scholar 

  • Gencarelli, CN, De Simone F, Hedgecock IM, Sprovieri F, Pirrone N (2013) Development and application of the regional scale atmospheric mercury model based on WRF/Chem: a Mediterranean area investigation. Environ Sci Pollut Res (in this issue)

  • Graydon JA, St Louis VL, Hintelman H, Lindberg SE, Sandilands KA, Rudd JWM, Kelly CA, Hall BD, Mowat LD (2008) Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ Sci Technol 42:8345–8351

    Article  CAS  Google Scholar 

  • Guo Y, Feng X, Li Z, He T, Yan H, Meng B, Zhang J, Qiu G (2008) Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River basin, Guizhou, China. Atmos Environ 42:7096–7103

    Article  CAS  Google Scholar 

  • Hall B (1995) The gas phase oxidation of elemental mercury by ozone. Water Air Soil Pollut 80(1–4):301–315

    Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF, Lamborg CH, Balcom PH, Visscher PT (2004) Biogeochemistry of methylmercury in sediments of Long Island Sound. Mar Chem 90:31–52

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Lamborg CH, Fitzgerald WF (2007) Aqueous phase methylation as a potential source of methylmercury in wet deposition. Atmos Environ 41:1663–1668

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF, Balcom PH, Visscher PT (2008) Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor. Mar Chem 109:165–182

    Article  CAS  Google Scholar 

  • Harmelin-Vivien M, Cossa D, Crochet S, Banaru D, Letourneur Y, Mellon-Duval C (2009) Difference of mercury bioaccumulation in red mullets from the north-western Mediterranean and Black seas. Mar Pollut Bull 58(5):679–685

    Article  CAS  Google Scholar 

  • Hedgecock IM, Pirrone N, Sprovieri F, Pesenti E (2003) Reactive gaseous mercury in the marine boundary layer: modelling and experimental evidence of its formation in the Mediterranean region. Atmospheric Environment 37(Supplement 1):41–49

    Article  Google Scholar 

  • Hedgecock IM, Trunfio GA, Pirrone N, Sprovieri F (2005) Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model. Atmospheric Environment 39(38):7217–7230

    Article  CAS  Google Scholar 

  • Hedgecock IM, Pirrone N, Trunfio GA, Sprovieri F (2006) Integrated mercury cycling, transport, and air-water exchange (MECAWEx) model. Journal of Geophysical Research: Atmospheres 111(D20):302

    Article  Google Scholar 

  • Heimbürger LE, Cossa D, Marty JC, Migon C, Averty B, Dufour A, Ras J (2010) Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochimica et Cosmochimica Acta 74(19):5549–5559

    Article  Google Scholar 

  • Heimbürger LE, Mignon C, Cossa D (2011) Impact of atmospheric deposition of anthropogenic and natural trace metals on Northwestern Mediterranean surface waters: a box model assessment. Environ Pollut 159:1629–1634

    Article  Google Scholar 

  • Hines ME, Faganeli J, Adatto I, Horvat M (2006) Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija mercury mine, Slovenia. Appl Geochem 21(11):1924–1939

    Article  CAS  Google Scholar 

  • Hollweg T, Gilmour C, Mason R (2009) Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Mar Chem 114(3–4):86–101

    Article  CAS  Google Scholar 

  • Holmes CD, Jacob DJ, Corbitt ES, Mao J, Yang X, Talbot R, Slemr F (2010) Global atmospheric model for mercury including oxidation by bromine atoms. Atmos Chem Phys 10(24):12,037–12,057

    Article  CAS  Google Scholar 

  • Horvat M, Covelli S, Faganeli J, Logar M, Mandić V, Rajar R, Širca A, Žagar D (1999) Mercury in contaminated coastal environments; a case study: the Gulf of Trieste. Sci Total Environ 237–238:43–56

    Article  Google Scholar 

  • Horvat M, Kotnik J, Logar M, Fajon V, Zvonarić T, Pirrone N (2003) Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea. Atmos Environ 37(Supplement 1):93–108

    Article  Google Scholar 

  • Jung G, Hedgecock IM, Pirrone N (2009) Echmerit v1.0 a new global fully coupled mercury-chemistry and transport model. GMDD 2(1):385–453

    Google Scholar 

  • Kallos G, Voudouri A, Pytharoulis I, Kakaliagou O (2001) Modelling framework for atmospheric mercury over the Mediterranean region: model development and applications. In: Margenov S, Wašniewski J, Yalamov P (eds) Large-scale scientific computing lecture notes in computer science, vol 2179. Springer, Berlin, pp 281–290

  • Kocman D, Horvat M, Pirrone N, Cinnirella S (2013) Contribution of contaminated sites to the global mercury budget. Environ Res. doi:10.1016/j.envres.2012.12.011

    Google Scholar 

  • Kotnik J, Horvat M, Tessier E, Ogrinc N, Monperrus M, Amouroux D, Fajon V, Gibičar D, Žižek S, Sprovieri F, Pirrone N (2007) Mercury speciation in surface and deep waters of the Mediterranean Sea. Mar Chem 107(1):13–30

    Article  CAS  Google Scholar 

  • Kotnik J, Horvat M, Ogrinc N, Fajon V, Žagar D, Cossa D, Sprovieri F, Pirrone N (2013a) Mercury and its species in the Adriatic Sea. Marine Chemistry, in press

  • Kotnik J, Sprovieri F, Ogrinc N, Horvat M, Pirrone N (2013b) Mercury in the Mediterranean. Part 1: spatial and temporal trends. Environ Sci Pollut Res (in this issue)

  • Lamborg CH, Yiiterhan O, Fitzgerald WF, Balcom PH, Hammerschmidt CR, Murray J (2008) Vertical distribution of mercury species at two sites in the Western Black Sea. Mar Chem 111(1–2):77–89

    Article  CAS  Google Scholar 

  • Lascaratos A, Roether W, Nittis K, Klein B (1999) Recent changes in deep water formation and spreading in the Eastern Mediterranean Sea: a review. Prog Oceanogr 44(1):5–36

    Article  Google Scholar 

  • Laurier FJG, Mason RP, Whalin L, Kato S (2003) Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: a potential role of halogen chemistry. J Geophys Res 108(D17):4529. doi:10.1029/2003JD003625

    Article  Google Scholar 

  • Law R, Hanke G, Angelidis M, Batty J, Bignert A, Dachs J, Davies I, Denga Y, Duffek A, Herut B, Hylland K, Lepom P, Leonards P, Mehtonen J, Piha H, Roose P, J T, Velikova V, Vethaak D (2010) Marine strategy framework directive—task group 8 contaminants and pollution effects. Tech. rep., Publications Office of the European Union. doi 10.2788/85887

  • Ludwig W, Bouwman AF, Dumont E, Lespinas F (2010) Water and nutrient fluxes from major Mediterranean and Black Sea rivers: past and future trends and their implications for the basin-scale budgets. Global Biogeochemical Cycles 24(4): GB0A13. doi:10.1029/2009GB003594

  • Mason RP (2001) The bioaccumulation of mercury, methylmercury and other toxic elements into pelagic and benthic organisms. In: Newman NC, Hale RC (eds) Coastal and estuarine risk assessment. Lewis, Boca Raton, pp 127–149

    Google Scholar 

  • Mason R, Sullivan K (1999) The distribution and speciation of mercury in the south and equatorial Atlantic. Deep-Sea Res II Top Stud Oceanogr 46(5):937–956

    Article  CAS  Google Scholar 

  • Mason R, Rolfhus K, Fitzgerald W (1998) Mercury in the North Atlantic. Mar Chem 61(1–2):37–53

    Article  CAS  Google Scholar 

  • Mason R, Lawson N, Sheu GR (2001) Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper waters. Deep-Sea Res II Top Stud Oceanogr 48(13):2829–2853

    Article  CAS  Google Scholar 

  • Mason RP, Choi AL, Fitzgerald WF, Hammerschmidt CR, Lamborg CH, Soerensen AL, Sunderland EM (2012) Mercury biogeochemical cycling in the ocean and policy implications. Environ Res 119:101–117

    Article  CAS  Google Scholar 

  • MFSD (2008) Directive 2008/56/EC of the European parliament and the council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). URL http://ec.europa.eu/environment/water/\\marine/index\_en.htm. Accessed 17 Aug 2010

  • Monperrus M, Tessier E, Amouroux D, Leynaert A, Huonnic P, Donard O (2007a) Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Mar Chem 107(1):49–63

    Article  CAS  Google Scholar 

  • Monperrus M, Tessier E, Point D, Vidimova K, Amouroux D, Guyoneaud R, Leynaert A, Grall J, Chauvaud L, Thouzeau G, Donard O (2007b) The biogeochemistry of mercury at the sediment-water interface in the Thau Lagoon. 2. Evaluation of mercury methylation potential in both surface sediment and the water column. Estuarine Coastal Shelf Sci 72(3):485–496

    Article  CAS  Google Scholar 

  • Ogrinc N, Monperrus M, Kotnik J, Fajon V, Vidimova K, Amouroux D, Kocman D, Tessier E, Žižek S, Horvat M (2007) Distribution of mercury and methylmercury in deep-sea surficial sediments of the Mediterranean Sea. Mar Chem 107(1):31–48

    Article  CAS  Google Scholar 

  • Pal B, Ariya PA (2004) Gas-phase HO-initiated reactions of elemental mercury: kinetics, product studies, and atmospheric implications. Environ Sci Tech 38(21):5555–5566

    Article  CAS  Google Scholar 

  • Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeoclimatol Palaeoecol 158(3):153–173

    Article  Google Scholar 

  • Pirrone N, Ferrara R, Hedgecock IM, Kallos G, Mamane Y, Munthe J, Pacyna JM, Pytharoulis I, Sprovieri F, Voudouri A, Wängberg I (2003) Dynamic processes of mercury over the Mediterranean region: results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project. Atmos Environ 37(Supplement 1):S21–S39

    Article  CAS  Google Scholar 

  • Point D, Monperrus M, Tessier E, Amouroux D, Chauvaud L, Thouzeau G, Jean F, Amice E, Grall J, Leynaert A, Clavier J, Donard O (2007) Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France). Estuarine Coastal Shelf Sci 72(3):457–471

    Article  Google Scholar 

  • Rajar R, Žagar D, Četina M, Akagi H, Yano S, Tomiyasu T, Horvat M (2004) Application of three-dimensional mercury cycling model to coastal seas. Ecol Model 171(1–2):139–155

    Article  CAS  Google Scholar 

  • Rajar R, Četina M, Horvat M, Žagar D (2007) Mass balance of mercury in the Mediterranean Sea. Mar Chem 107(1):89–102

    Article  CAS  Google Scholar 

  • Ramšak V, Malačič V, Ličer M, Kotnik J, Horvat M, Žagar D (2013) High-resolution pollutant dispersion modelling in contaminated coastal sites. Environ Res. 125:103–112

    Google Scholar 

  • Robinson A, Leslie W, Theocharis A, Lascaratos A (2001) Mediterranean Sea circulation. In: John H, Steele E (eds) Encyclopedia of ocean sciences. Academic, Oxford, pp 1689–1705

    Chapter  Google Scholar 

  • Sanborn JR, Brodberg RK (2006) Evaluation of bioaccumulation factors and translators for methylmercury. Pesticide and Environmental Toxicology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63

    Article  Google Scholar 

  • Širca A, Rajar R, Harris RC, Horvat M (1999) Mercury transport and fate in the Gulf of Trieste (Northern Adriatic)—a two-dimensional modelling approach. Environ Model Software 14(6):645–655

    Article  Google Scholar 

  • Sommar J, Gårdfeldt K, Stromberg D, Feng X (2001) A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury. Atmos Environ 35(17):3049–3054

    Article  CAS  Google Scholar 

  • Sprovieri F, Pirrone N, Gårdfeldt K, Sommar J (2003) Mercury speciation in the marine boundary layer along a 6000km cruise path around the Mediterranean Sea. Atmos Environ 37(Supplement 1):63–71

    Article  Google Scholar 

  • Sprovieri F, Hedgecock IM, Pirrone N (2010) An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer. Atmos Chem Phys 10(8):3985–3997

    Article  CAS  Google Scholar 

  • Storelli M, Stuffler R, Marcotrigiano G (2002) Total and methylmercury residues in tuna-fish from the Mediterranean Sea. Food Addit Contam 19(8):715–720

    Article  CAS  Google Scholar 

  • Storelli M, Giacominelli-Stuffler R, Storelli A, Marcotrigiano G (2005) Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: a comparative study. Mar Pollut Bull 50(9):1004–1007

    Article  CAS  Google Scholar 

  • Suárez-de Vivero JL (2010) Jurisdictional waters in the Mediterranean and Black Seas. Directorate-General for Internal Policies of European Parliament. Policy Department B: Structural and Cohesion Policies. Fisheries. Online at: www.europarl.europa.eu/studies. Accessed 12 Dec 2011

  • Subir M, Ariya PA, Dastoor AP (2011) A review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters fundamental limitations and the importance of heterogeneous chemistry. Atmos Environ 45(32):5664–5676

    Article  CAS  Google Scholar 

  • Sunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM (2009) Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Global Biogeochem Cycles 23(2), GB2010. doi:10.1029/2008GB003425

    Article  Google Scholar 

  • Tas E, Obrist D, Peleg M, Matveev V, Faın X, Asaf D, Luria M (2012) Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea. Atmos Chem Phys 12(5):2429–2440

    Article  CAS  Google Scholar 

  • UNEP/MAP (2012) The Mediterranean action plan. Online at http://www.unepmap.org. Accessed 10 Apr 2013

  • Wängberg I, Munthe J, Pirrone N, Iverfeldt A, Bahlman E, Costa P, Ebinghaus R, Feng X, Ferrara R, Gardfeldt K, Kock H, Lanzillotta E, Mamane Y, Mas F, Melamed E, Osnat Y, Prestbo E, Sommar J, Schmolke S, Spain G, Sprovieri F, Tuncel G (2001) Atmospheric mercury distribution in northern Europe and in the Mediterranean region. Atmospheric Environment 35(17):3019–3025

    Article  Google Scholar 

  • Wängberg I, Munthe J, Amouroux D, Andersson ME, Fajon V, Ferrara R, Gardfeldt K, Horvat M, Mamane Y, Melamed E, Monperrus M, Ogrinc N, Yossef O, Pirrone N, Sommar J, Sprovieri F (2008) Atmospheric mercury at Mediterranean coastal stations. Environ Fluid Mech 8(2):101–116

    Article  Google Scholar 

  • Žagar D, Petkovšek G, Rajar R, Sirnik N, Horvat M, Voudouri A, Kallos G, Četina M (2007) Modelling of mercury transport and transformations in the water compartment of the Mediterranean Sea. Mar Chem 107(1):64–88

    Article  Google Scholar 

  • Zajc A (2006) Determination of mercury in different species of fresh and tin fish of the Slovenian market. Graduation thesis (in Slovenian). University of Ljubljana, Slovenia, 95pp

    Google Scholar 

  • Zavatarelli M, Mellor GL (1995) A numerical study of the Mediterranean Sea circulation. J Phys Oceanogr 25:1384–1414

    Article  Google Scholar 

Download references

Acknowledgments

The research was performed in the framework of the EU project GMOS (FP7-265113) with the support of the Ministry of Higher Education and Technology of the Republic of Slovenia (Programmes P2-0180, P1-0237 and P1-0143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Žagar.

Additional information

Responsible editor: Vera Slaveykova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žagar, D., Sirnik, N., Četina, M. et al. Mercury in the Mediterranean. Part 2: processes and mass balance. Environ Sci Pollut Res 21, 4081–4094 (2014). https://doi.org/10.1007/s11356-013-2055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2055-5

Keywords

Navigation