Skip to main content

Advertisement

Log in

Wastewater treatment to enhance the economic viability of microalgae culture

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microalgae culture is still not economically viable and it presents some negative environmental impacts, concerning water, nutrient and energy requirements. In this context, this study aims to review the recent advances on microalgal cultures in wastewaters to enhance their economic viability. We focused on three different culture concepts: (1) suspended cell systems, (2) cell immobilization, and (3) microalgae consortia. Cultures with suspended cells are the most studied. The nutrient removal efficiencies are usually high for wastewaters of different sources. However, biomass harvesting is difficult and a costly process due to the small cell size and lower culture density. On the other hand, the cell immobilization systems showed to be the solution for this problem, having as main limitation the nutrient diffusion from bulk to cells, which results in a reduced nutrient removal efficiency. The consortium between microalgae and bacteria enhances the growth of both microorganisms. This culture concept showed to be a promising technology to improve wastewater treatment, regarding not only nutrient removal but also biomass harvesting by bioflocculation. The aggregation mechanism must be studied in depth to find the process parameters that would lead to an effective and cheap harvesting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker EW (1994) Microalgae: Biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Energ Convers Manage 38:S475–S479

    Article  CAS  Google Scholar 

  • Berberoglu H, Gomez PS, Pilon L (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for CO2 fixation and biofuel production. J Quant Spectrosc Ra 110(17):1879–1893

    Article  CAS  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energ 88(10):3425–3431

    Article  CAS  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations — response surface methodology analysis. Energ Convers Manage 50(2):262–267

    Article  CAS  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45(18):5925–5933. doi:10.1016/j.watres.2011.08.044

    Article  CAS  Google Scholar 

  • Brenner K, You LC, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489. doi:10.1016/j.tibtech.2008.05.004

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li YB (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369. doi:10.1016/j.rser.2012.11.030

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Ecology. Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015

    Article  CAS  Google Scholar 

  • Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63(4):660–665. doi:10.2166/Wst.2011.100

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627

    Article  CAS  Google Scholar 

  • de-Bashan LE, Moreno M, Hernandez JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36(12):2941–2948

    Article  CAS  Google Scholar 

  • de-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38(2):466–474

    Article  CAS  Google Scholar 

  • de-Bashan LE, Antoun H, Bashan Y (2008a) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44(4):938–947

    Article  CAS  Google Scholar 

  • De-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y (2008b) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99(11):4980–4989

    Article  CAS  Google Scholar 

  • de Godos I, Vargas VA, Blanco S, Gonzalez MCG, Soto R, Garcia-Encina PA, Becares E, Munoz R (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101(14):5150–5158

    Article  Google Scholar 

  • Demirbas A, Demirbas MF (2010) Algae energy: Algae as a new source of biodiesel. In. Green energy and technology. Springer, London, pp 75–96

    Google Scholar 

  • Dumas A, Laliberte G, Lessard P, de la Noue J (1998) Biotreatment of fish farm effluents using the cyanobacterium Phormidium bohneri. Aquacult Eng 17(1):57–68

    Article  Google Scholar 

  • Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45(1):53–60

    Article  Google Scholar 

  • Fierro S, Sanchez-Saavedra MDP, Copalcua C (2008) Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour Technol 99(5):1274–1279

    Article  CAS  Google Scholar 

  • Gallagher BJ (2011) The economics of producing biodiesel from algae. Renew Energ 36(1):158–162

    Article  CAS  Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12(3–5):331–339. doi:10.1023/A:1008146421368

    Article  CAS  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2013) Lipid production of Chlorella vulgaris and Pseudokirchneriella subcapitata. International Journal of Energy and Environmental Engineering 4 (14). doi:10.1186/2251-6832-4-14

  • Gonzalez LE, Canizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60(3):259–262

    Article  CAS  Google Scholar 

  • Gough C, Upham P (2011) Biomass energy with carbon capture and storage (BECCS or Bio-CCS). Greenh Gases: Sci Technol 1(4):324–334

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  Google Scholar 

  • He SB, Xue G (2010) Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). J Hazard Mater 178(1–3):895–899

    Article  CAS  Google Scholar 

  • Hernandez JP, De-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme Microb Tech 38(1–2):190–198

    Article  CAS  Google Scholar 

  • Hernandez JP, De-Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from and zone soils. Eur J Soil Biol 45(1):88–93

    Article  CAS  Google Scholar 

  • Hernandez-Caraballo EA, Marco-Parra LM (2003) Direct analysis of blood serum by total reflection X-ray fluorescence spectrometry and application of an artificial neural network approach for cancer diagnosis. Spectrochim Acta B 58(12):2205–2213

    Article  Google Scholar 

  • Jimenez-Perez MV, Sanchez-Castillo P, Romera O, Fernandez-Moreno D, Perez-Martinez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme Microb Tech 34(5):392–398

    Article  CAS  Google Scholar 

  • Kang CD, An JY, Park TH, Sim SJ (2006) Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem Eng J 31(3):234–238

    Article  CAS  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotech 160(1):9–18

    Article  CAS  Google Scholar 

  • Laliberte G, Lessard P, DelaNoue J, Sylvestre S (1997) Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresour Technol 59(2–3):227–233

    Article  CAS  Google Scholar 

  • Larsdotter K (2006) Microalgae for phosphorus removal from wastewater in a Nordic climate. PhD thesis, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Larsdotter K, Jansen JLC, Dalhammar G (2007) Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environ Technol 28(9):953–960

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled waste-water. Environ Pollut 89(1):59–66

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18(9):945–951

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1998) Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresour Technol 63(2):115–121

    Article  CAS  Google Scholar 

  • Lee K, Lee CG (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioprocess Eng 6:194–199

    Article  CAS  Google Scholar 

  • Li X, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500

    Article  Google Scholar 

  • Li YC, Chen YF, Chen P, Min M, Zhou WG, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Article  CAS  Google Scholar 

  • Lodi A, Binaghi L, Solisio C, Converti A, Del Borghi M (2003) Nitrate and phosphate removal by Spirulina platensis. J Ind Microbiol Biot 30(11):656–660

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390

    Article  CAS  Google Scholar 

  • Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46(13):7073–7085

    Article  CAS  Google Scholar 

  • Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energ Environ Sci 3(1):43–81

    Article  CAS  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Bio 10(1):31–41

    Article  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99(10):3949–3964

    Article  CAS  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    Article  CAS  Google Scholar 

  • Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE: 2. Screening and breeding of microalgae with high capability in fixing CO2. Energ Convers Manage 38:S493–S497

    Article  CAS  Google Scholar 

  • Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH (2011) Microalgal production — a close look at the economics. Biotechnol Adv 29(1):24–27. doi:10.1016/j.biotechadv.2010.08.005

    Article  CAS  Google Scholar 

  • Nowack ECM, Podola B, Melkonian M (2005) The 96-well twin-layer system: a novel approach in the cultivation of microalgae. Protist 156(2):239–251

    Article  Google Scholar 

  • Olguin EJ, Galicia S, Mercado G, Perez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15(2–3):249–257

    Article  CAS  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ (2011) Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Sci Technol 63(10):2403–2410

    Article  CAS  Google Scholar 

  • Park Y, Je KW, Lee K, Jung SE, Choi TJ (2008) Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga. Hydrobiologia 598:219–228

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42. doi:10.1016/j.biortech.2010.06.158

    Article  CAS  Google Scholar 

  • Peng YJ, Li C, Zhang DW (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102(1):101–105

    Article  Google Scholar 

  • Perez-Garcia O, De-Bashan LE, Hernandez JP, Bashan Y (2010) Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella Vulgaris immobilized with Azospirillum Brasilense. J Phycol 46(4):800–812

    Article  CAS  Google Scholar 

  • Pielke RA (2009) An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy. Environ Sci Policy 12(3):216–225

    Article  CAS  Google Scholar 

  • Pires JCM, Martins FG, Alvim-Ferraz MCM, Simoes M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89(9A):1446–1460

    Article  CAS  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16(5):3043–3053

    Article  CAS  Google Scholar 

  • Pires JCM, Gonçalves AL, Martins FG, Alvim-Ferraz MCM, Simões M (2013) Effect of light supply on CO2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-013-9463-1

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42(16):5958–5962

    Article  CAS  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae — defining the polyphosphate dynamics. Water Res 43(17):4207–4213

    Article  CAS  Google Scholar 

  • Powell N, Shilton A, Pratt S, Chisti Y (2011) Phosphate release from waste stabilisation pond sludge: significance and fate of polyphosphate. Water Sci Technol 63(8):1689–1694. doi:10.2166/Wst.2011.336

    Article  CAS  Google Scholar 

  • Rao PH, Kumar RR, Raghavan BG, Subramanian VV, Sivasubramanian V (2011) Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water Sa 37(1):7–14

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energ 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS (2013) Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol. doi:10.1007/s10811-013-9982-x

    Google Scholar 

  • Riano B, Molinuevo B, Garcia-Gonzalez MC (2011) Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour Technol 102(23):10829–10833. doi:10.1016/j.biortech.2011.09.022

    Article  CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101(1):58–64

    Article  CAS  Google Scholar 

  • Savage N (2011) The scum solution. Nature 474(7352):S15–S16

    Article  CAS  Google Scholar 

  • Schindle DW (1974) Eutrophication and recovery in experimental lakes — implications for lake management. Science 184(4139):897–899

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program — biodiesel from algae. vol NREL/TP-580-24190. National Renewable Energy Laboratory

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423

    Article  CAS  Google Scholar 

  • Silva-Benavides AM, Torzillo G (2012) Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J Appl Phycol 24(2):267–276

    Article  CAS  Google Scholar 

  • Singh UB, Ahluwalia AS (2012) Microalgae: a promising tool for carbon sequestration. Mitigation and Adaptation Strategies for Global Change

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energ 88(10):3499–3506

    Article  CAS  Google Scholar 

  • Su HY, Zhang YL, Zhang CM, Zhou XF, Li JP (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102(21):9884–9890

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29(6):896–907

    Article  CAS  Google Scholar 

  • Sydney EB, da Silva TE, Tokarski A, Novak AC, de Carvalho JC, Woiciecohwski AL, Larroche C, Soccol CR (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energ 88(10):3291–3294

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107(1):145–151

    Article  CAS  Google Scholar 

  • Thakur A, Kumar HD (1999) Nitrate, ammonium, and phosphate uptake by the immobilized cells of Dunaliella salina. B Environ Contam Tox 62(1):70–78

    Article  CAS  Google Scholar 

  • Torvanger A, Lund MT, Rive N (2012) Carbon capture and storage deployment rates: needs and feasibility. Mitigation and Adaptation Strategies for Global Change

  • Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG, Weissman JC, Rubino M, Hileman JI (2012) Environmental performance of algal biofuel technology options. Environ Sci Technol 46(4):2451–2459. doi:10.1021/Es2026399

    Article  CAS  Google Scholar 

  • Vymazal J (1995) Algae and element cycling in wetlands. CRC Press, Boca Raton, FL

    Google Scholar 

  • Waltz E (2009) Biotech’s green gold? Nat Biotechnol 27(1):15–18

    Article  CAS  Google Scholar 

  • Wang B, Lan CQ (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour Technol 102(10):5639–5644

    Article  CAS  Google Scholar 

  • Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biot 79(5):707–718

    Article  CAS  Google Scholar 

  • Weis JJ, Madrigal DS, Cardinale BJ (2008) Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: a microcosm experiment. PLoS One 3(7):E2825. doi:10.1371/Journal.Pone.0002825

    Article  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biot 69(4):451–455

    Article  CAS  Google Scholar 

  • Zhang ED, Wang B, Wang QH, Zhang SB, Zhao BD (2008) Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99(9):3787–3793

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C.M. Pires thanks the Foundation for Science and Technology, POPH-QREN and FSE for the Post-Doctoral fellowship SFRH/BPD/66721/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. M. Pires.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G. et al. Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut Res 20, 5096–5105 (2013). https://doi.org/10.1007/s11356-013-1791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1791-x

Keywords

Navigation