Skip to main content
Log in

Efficient removal of uranium(VI) from aqueous systems by heat-treated carbon microspheres

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, uranium(VI) was successfully removed from aqueous solutions using heat-treated carbon microspheres based on a batch adsorption technique. Influence of the parameters, such as solution pH, contact time, initial uranium(VI) concentration, and temperature on the removal efficiency have been investigated in detail. The results reveal that the maximum adsorption capacity of the heat-treated carbon microspheres toward uranium(VI) is 92.08 mg g−1, displaying a high efficiency for the removal of uranium(VI) from aqueous solution. The experimental data are analyzed using sorption kinetic models. It is revealed that the process obey the pseudo-second-order kinetic model, the determining step might be chemical sorption. The thermodynamic parameters, such as ΔH°, ΔS°, and ΔG° show that the process is endothermic and spontaneous. This work provides an efficient, fast, and convenient approach for the removal of uranium(VI) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  • Amaral JCBS, Morais CA (2010) Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner Eng 23:498–503

    Article  CAS  Google Scholar 

  • Anirudhan TS, Divya L, Suchithra PS (2009) Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethyl-methacrylate)-grafted lignocellulosics. J Environ Manag 90:549–560

    Article  CAS  Google Scholar 

  • Benaissa H, Elouchdi MA (2011) Biosorption of copper(II) ions from synthetic aqueous solutions by drying bed activated sludge. J Hazard Mater 194:69–78

    Article  CAS  Google Scholar 

  • Bhattacharyal AK, Naiya TK, Mondal SN, Das SK (2008) Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J 137:529–541

    Google Scholar 

  • Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64:93–112

    Article  CAS  Google Scholar 

  • Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–149

    Article  CAS  Google Scholar 

  • Chen Z, Ma LJ, Li SQ, Geng JX, Song Q, Liu J, Wang CL, Wang H, Li J, Qin Z, Li SJ (2011) Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Appl Surf Sci 257:8686–8691

    Article  CAS  Google Scholar 

  • Gao Y, Mucci A (2003) Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem Geol 199:91–109

    Article  CAS  Google Scholar 

  • Han RP, Zou WH, Wang Y, Zhu L (2007) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93:127–143

    Article  CAS  Google Scholar 

  • John AMS, Cattrall RW, Kolev SD (2010) Extraction of uranium(VI) from sulfate solutions using a polymer inclusion membrane containing di-(2-ethylhexyl) phosphoric acid. J Membr Biol 364:354–361

    Google Scholar 

  • Jung YJ, Kim S, Park SJ, Kim JM (2008) Preparation of functionalized nanoporous carbons for uranium loading. Colloids Surf A Physicochem Eng Asp 313–314:292–295

    Article  Google Scholar 

  • Khani MH (2011) Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics. Environ Sci Pollut Res 18:1593–1605

    Article  CAS  Google Scholar 

  • Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manage 92:2504–2512

    Article  CAS  Google Scholar 

  • Kutahyali C, Eral M (2004) Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep Purif Technol 40:109–114

    Article  CAS  Google Scholar 

  • Lees JS, Kang TJ (1997) Changes in physico-chemical and morphological properties of carbon fiber by surface treatment. Carbon 35:209–216

    Article  Google Scholar 

  • Lourenco J, Pereira R, Silva A, Carvalho F, Oliveira J, Malta M, Paiva A, Goncalves F, Mendo S (2012) Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints in earthworms exposed in situ to uranium mining wastes. Ecotoxicol Environ Saf 75:46–54

    Article  CAS  Google Scholar 

  • Maeda H (2005) The global nuclear fuel market: supply and demand. In: Proceedings of the world nuclear association annual symposium. London, pp 2005–2030

  • Massarina S, Alonzo F, Garcia-Sanchez L, Gilbinb R, Garnier-Laplace J, Poggiale JC (2010) Effects of chronic uranium exposure on life history and physiology of Daphnia magna over three successive generations. Aquat Toxicol 99:309–319

    Article  Google Scholar 

  • Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441

    Article  CAS  Google Scholar 

  • Morais CA, Gomiero LA (2005) Uranium stripping from tertiary amine loaded solution by ammonium sulfate. Miner Eng 18:1277–1281

    Article  CAS  Google Scholar 

  • Mudd GM (2008) Radon releases from Australian uranium mining and milling projects: assessing the UNSCEAR approach. J Environ Radioact 99:288–315

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  • Schaller J, Weiske A, Dudel EG (2011) Effects of gamma-sterilization on DOC, uranium and arsenic remobilization from organic and microbial rich stream sediments. Sci Total Environ 409:3211–3214

    Article  CAS  Google Scholar 

  • Schierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  • Sheha RR, El-Zahhar AA (2008) Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. J Hazard Mater 150:795–803

    Article  CAS  Google Scholar 

  • Stamberg K, Venkatesan KA, Rao PRV (2003) Surface complexation modeling of uranyl ion sorption on mesoporous silica. Colloids Surf A Physicochem Eng Asp 221:109–114

    Article  Google Scholar 

  • Starvin AM, Prasada Rao T (2004) Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta 63:225–232

    Article  CAS  Google Scholar 

  • Sureshkumara MK, Dasb D, Malliac MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  Google Scholar 

  • Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium(VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64:2431–2438

    Article  CAS  Google Scholar 

  • Thakur P, Chakravortty P, Dash KC, Ramamohan TR, Reddy MLP (1998) Synergistic extraction of uranium(VI) by mixtures of beta-diketones and structurally related crown ethers. Radiochim Acta 80:155–161

    CAS  Google Scholar 

  • Tokunaga TK, Kim Y, Wan JM, Yang L (2012) Aqueous uranium(VI) concentrations controlled by calcium uranyl vanadate precipitates. Environ Sci Technol 46:7471–7477

    Article  CAS  Google Scholar 

  • Wang J, Jing XY, Wang J, Ge L, Jamil S, Zhang ML (2010) A facile and green synthesis route to C@LaCO3OH core-shell microspheres using colloidal carbonaceous spheres as template and its by-products as carbon source. Solid State Sci 12:1934–1940

    Article  CAS  Google Scholar 

  • Xie SB, Zhang C, Zhou XH, Yang J, Zhang XJ, Wang JS (2009) Removal of uranium(VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  CAS  Google Scholar 

  • Xu Y, Zondlo JW, Finklea HO, Brennsteiner A (2000) Electrosorption of uranium on carbon fibers as a means of environmental remediation. Fuel Process Technol 68:189–208

    Article  CAS  Google Scholar 

  • Zhou LM, Jin JY, Liu ZR, Liang XZ, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185:1045–1052

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Special Innovation Talents of Harbin Science and Technology (2011RFQXG016), Fundamental Research Funds of the Central University (HEUCFZ), Key Program of the Natural Science Foundation of Heilongjiang Province (ZD201219), Program of International S&T Cooperation special project (2013DFA50480), Special Innovation Talents of Harbin Science andTechnology (2012RFXXG104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

Responsible editor: Vera Slaveykova

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 765 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wang, J., Li, R. et al. Efficient removal of uranium(VI) from aqueous systems by heat-treated carbon microspheres. Environ Sci Pollut Res 20, 8202–8209 (2013). https://doi.org/10.1007/s11356-013-1788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1788-5

Keywords

Navigation