Skip to main content
Log in

Removal of carbamazepine and clofibric acid from water using double templates–molecularly imprinted polymers

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A novel double templates–molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using carbamazepine (CBZ) and clofibric acid (CA) as the double templates molecular and 2-vinylpyridine as functional monomer. The equilibrium data of MIP was well described by the Freundlich isotherm model. Two kinetic models were adopted to describe the experimental data, and the pseudo second-order model well-described adsorption of CBZ and CA on the MIP. Adsorption experimental results showed that the MIP had good selectivity and adsorption capacity for CBZ and CA in the presence of competitive compounds compared with non-imprinted polymer, commercial powdered activated carbon, and C18 adsorbents. The feasibility of removing CBZ and CA from water by the MIP was demonstrated using tap water, lake water, and river water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An F, Gao B, Feng X (2008) Adsorption and recognizing ability of molecular imprinted polymer MIP-PEI/SiO2 towards phenol. J Hazard Mater 157:286–292

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Marotta R, Radovnikovic A (2003) Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation. J Hazard Mater 103:233–246

    Article  CAS  Google Scholar 

  • Baggiani C, Giraudi G, Giovannoli C, Tozzi C, Anfossi L (2004) Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template: indirect evidence of the formation of template clusters in the binding site. Anal Chim Acta 504:43–52

    Article  CAS  Google Scholar 

  • Beltran A, Caro E, Marcé RM, Cormack PAG, Sherrington DC, Borrull F (2007) Synthesis and application of a carbamazepine-imprinted polymer for solid-phase extraction from urine and wastewater. Anal Chim Acta 597:6–11

    Article  CAS  Google Scholar 

  • Beltran A, Marcé RM, Cormack PAG, Borrull F (2009) Synthesis by precipitation polymerisation of molecularly imprinted polymer microspheres for the selective extraction of carbamazepine and oxcarbazepine from human urine. J Chromatogr A 1216:2248–2253

    Article  CAS  Google Scholar 

  • Bui TX, Choi H (2009) Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J Hazard Mater 168:602–608

    Article  CAS  Google Scholar 

  • Byun HS, Youn YN, Yun YH, Yoon SD (2010) Selective separation of aspirin using molecularly imprinted polymers. Sep Purif Technol 74:144–153

    Article  CAS  Google Scholar 

  • Cacho C, Turiel E, Pérez-Conde C (2009) Molecularly imprinted polymers: an analytical tool for the determination of benzimidazole compounds in water samples. Talanta 78:1029–1035

    Article  CAS  Google Scholar 

  • Chingombe P, Saha B, Wakeman RJ (2006) Sorption of atrazine on conventional and surface modified activated carbons. J Colloid Interface Sci 302:408–416

    Article  CAS  Google Scholar 

  • Dai CM, Geissen SU, Zhang YL, Zhang YJ, Zhou XF (2010) Performance evaluation and application of molecularly imprinted polymer for separation of carbamazepine in aqueous solution. J Hazard Mater 184:156–163

    Article  CAS  Google Scholar 

  • Doll TE, Frimmel FH (2004) Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials—determination of intermediates and reaction pathways. Water Res 38:955–964

    Article  CAS  Google Scholar 

  • Heberer T (2002a) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  • Heberer T (2002b) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189

    Article  CAS  Google Scholar 

  • Heberer T, Feldmann D (2005) Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents—modeling versus measurements. J Hazard Mater 122:211–218

    Article  CAS  Google Scholar 

  • Jin Y, Row K (2005) Adsorption isotherm of ibuprofen on molecular imprinted polymer. Korean J Chem Eng 22:264–267

    Article  CAS  Google Scholar 

  • Jing T, Wang Y, Dai Q, Xia H, Niu J, Hao Q, Mei S, Zhou Y (2010) Preparation of mixed-templates molecularly imprinted polymers and investigation of the recognition ability for tetracycline antibiotics. Biosens Bioelectron 25:2218–2224

    Article  CAS  Google Scholar 

  • Jos A, Repetto G, Rios JC, Hazen MJ, Molero ML, del Peso A, Salguero M, Fernández-Freire P, Pérez-Martín JM, Cameán A (2003) Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicol In Vitro 17:525–532

    Article  CAS  Google Scholar 

  • Krupadam RJ, Khan MS, Wate SR (2010) Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water Res 44:681–688

    Article  CAS  Google Scholar 

  • Kyzas GZ, Bikiaris DN, Lazaridis NK (2009) Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs). Chem Eng J 149:263–272

    Article  CAS  Google Scholar 

  • Le Noir M, Lepeuple AS, Guieysse B, Mattiasson B (2007) Selective removal of 17[beta]-estradiol at trace concentration using a molecularly imprinted polymer. Water Res 41:2825–2831

    Article  Google Scholar 

  • Li P, Rong F, Yuan C (2003) Morphologies and binding characteristics of molecularly imprinted polymers prepared by precipitation polymerization. Polym Int 52:1799–1806

    Article  CAS  Google Scholar 

  • Liu Y, Hoshina K, Haginaka J (2010) Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization. Talanta 80:1713–1718

    Article  CAS  Google Scholar 

  • Meng Z, Chen W, Mulchandani A (2005) Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. Environ Sci Technol 39:8958–8962

    Article  CAS  Google Scholar 

  • Mestre AS, Pinto ML, Pires J, Nogueira JMF, Carvalho AP (2010) Effect of solution pH on the removal of clofibric acid by cork-based activated carbons. Carbon 48:972–980

    Article  CAS  Google Scholar 

  • Pan J, Zou X, Wang X, Guan W, Yan Y, Han J (2010) Selective recognition of 2,4-dichlorophenol from aqueous solution by uniformly sized molecularly imprinted microspheres with β-cyclodextrin/attapulgite composites as support. Chem Eng J 162:910–918

    Article  CAS  Google Scholar 

  • Pan J, Xu L, Dai J, Li X, Hang H, Huo P, Li C, Yan Y (2011) Magnetic molecularly imprinted polymers based on attapulgite/Fe3O4 particles for the selective recognition of 2,4-dichlorophenol. Chem Eng J 174:68–75

    Article  CAS  Google Scholar 

  • Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta 622:48–61

    Article  CAS  Google Scholar 

  • Reddersen K, Heberer T, Dünnbier U (2002) Identification and significance of phenazone drugs and their metabolites in ground- and drinking water. Chemosphere 49:539–544

    Article  CAS  Google Scholar 

  • Rosal R, Gonzalo MS, Rodríguez A, García-Calvo E (2009) Ozonation of clofibric acid catalyzed by titanium dioxide. J Hazard Mater 169:411–418

    Article  CAS  Google Scholar 

  • Rushton GT, Karns CL, Shimizu KD (2005) A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Anal Chim Acta 528:107–113

    Article  CAS  Google Scholar 

  • Sun Z, Schüssler W, Sengl M, Niessner R, Knopp D (2008) Selective trace analysis of diclofenac in surface and wastewater samples using solid-phase extraction with a new molecularly imprinted polymer. Anal Chim Acta 620:73–81

    Article  CAS  Google Scholar 

  • Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch H-J, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    Article  CAS  Google Scholar 

  • Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068

    Article  CAS  Google Scholar 

  • Umpleby Ii RJ, Baxter SC, Bode M, Berch JK Jr, Shah RN, Shimizu KD (2001) Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Anal Chim Acta 435:35–42

    Article  Google Scholar 

  • Weigel S, Kuhlmann J, Hühnerfuss H (2002) Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci Total Environ 295:131–141

    Article  CAS  Google Scholar 

  • Winkler M, Lawrence JR, Neu TR (2001) Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res 35:3197–3205

    Article  CAS  Google Scholar 

  • Ye L, Mosbach K (2008) Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem Mater 20:859–868

    Article  CAS  Google Scholar 

  • Yu Q, Deng S, Yu G (2008) Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Res 42:3089–3097

    Article  CAS  Google Scholar 

  • Yu Q, Zhang R, Deng S, Huang J, Yu G (2009) Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Res 43:1150–1158

    Article  CAS  Google Scholar 

  • Zhang ZB, Hu JY (2008) Selective removal of estrogenic compounds by molecular imprinted polymer (MIP). Water Res 42:4101–4108

    Article  Google Scholar 

  • Zhou XF, Dai CM, Zhang YL, Surampalli R, Zhang T (2010) A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China. Environ Monit Assess 173:45–53

    Article  Google Scholar 

Download references

Acknowledgments

This study is financed by the Natural Science Foundation of China (41101480, 41070641,51138009), National Key Technologies R & D Program (2012BAJ25B02), New Century Excellent Talents in University ( NCET-11-0391), State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRY11004, PCRRY11015), and the Shanghai Committee of Science and Technology, China(11QH1402600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-lei Zhang or Xue-fei Zhou.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Cm., Zhang, J., Zhang, Yl. et al. Removal of carbamazepine and clofibric acid from water using double templates–molecularly imprinted polymers. Environ Sci Pollut Res 20, 5492–5501 (2013). https://doi.org/10.1007/s11356-013-1565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1565-5

Keywords

Navigation