Skip to main content
Log in

Treatment of 2,4-D, mecoprop, and dicamba using membrane bioreactor technology

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phenoxyacetic and benzoic acid herbicides are widely used agricultural, commercial, and domestic pesticides. As a result of high water solubility, mobility, and persistence, 2,4-dichlorophenoxyacetic acid (2,4-D), methylchlorophenoxypropionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba) have been detected in surface and waste waters across Canada. As current municipal wastewater treatment plants do not specifically address chronic, trace levels of contaminants like pesticides, an urgent need exists for an efficient, environmentally friendly means of breaking down these toxic herbicides. A commercially available herbicide mix, WeedEx, containing 2,4-D, mecoprop, and dicamba, was subjected to treatment using membrane bioreactor (MBR) technology. The three herbicides, in simulated wastewater with a chemical oxygen demand of 745 mg/L, were introduced to the MBR at concentrations ranging from 300 μg/L to 3.5 mg/L. Herbicides and biodegradation products were extracted from MBR effluent using solid-phase extraction followed by detection using high-performance liquid chromatography coupled with mass spectrometry. 2,4-D was reduced by more than 99.0 % within 12 days. Mecoprop and dicamba were more persistent and reduced by 69.0 and 75.4 %, respectively, after 112 days of treatment. Half-lives of 2,4-D, mecoprop and dicamba during the treatment were determined to be 1.9, 10.5, and 28.3 days, respectively. Important water quality parameters of the effluent such as dissolved oxygen, pH, ammonia, chemical oxygen demand, etc. were measured daily. MBR was demonstrated to be an environmentally friendly, compact, and efficient method for the treatment of toxic phenoxyacetic and benzoic acid herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aksu Z, Kabasakal E (2004) Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep Purif Technol 35(3):223–240. doi:10.1016/s1383-5866(03)00144-8

    Article  CAS  Google Scholar 

  • Amy PS, Schulke JW, Frazier LM, Seidler RJ (1985) Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol 49(5):1237–1245

    CAS  Google Scholar 

  • Beltran FJ, Gonzalez M, Rivas J, Marin M (1994) Oxidation of mecoprop in water with ozone and ozone combined with hydrogen peroxide. Ind Eng Chem Res 33(1):125–136. doi:10.1021/ie00025a017

    Article  CAS  Google Scholar 

  • Bernhard M, Müller J, Knepper TP (2006) Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res 40(18):3419–3428. doi:10.1016/j.watres.2006.07.011

    Article  CAS  Google Scholar 

  • Brillas E, Calpe JC, Casado J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res 34(8):2253–2262. doi:10.1016/s0043-1354(99)00396-6

    Article  CAS  Google Scholar 

  • Brimble S (2005) Pesticide utilization in Canada: a compilation of current sales and use data. Environment Canada, Ottawa

    Google Scholar 

  • Buenronstro-Zagal, JF, Ramirez-Oliva, A., Caffarel-Mendez, S, Schettino-Bermudez, B, Poggi-Varaldo HM (2000) Treatment of a 2, 4-dichlorophenoxyacetic acid (2, 4-D) contaminated wastewater in a membrane bioreactor. Water Sci Technol 42(5/6)185–192

    Google Scholar 

  • Buser HR, Müller MD, Theobald N (1998) Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea. Environ Sci Technol 32(1):188–192

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment (2007) Canadian water quality guidelines for the protection of aquatic life. Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Canziani R, Emondi V, Garavaglia M, Malpei F, Pasinetti E, Buttiglieri G (2006) Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. J Membr Sci 286(1–2):202–212. doi:10.1016/j.memsci.2006.09.044

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39(19):4797–4807. doi:10.1016/j.watres.2005.09.015

    Article  CAS  Google Scholar 

  • CropLife Canada (2011) Cultivating a Vibrant Canada: Annual Report 2010/2011. Ottawa

  • Defrance L, Jaffrin MY, Gupta B, Paullier P, Geaugey V (2000) Contribution of various constituents of activated sludge to membrane bioreactor fouling. Bioresour Technol 73(2):105–112. doi:10.1016/s0960-8524(99)00163-7

    Article  CAS  Google Scholar 

  • Degenhardt D, Cessna AJ, Raina R, Farenhorst A, Pennock DJ (2011) Dissipation of six acid herbicides in water and sediment of two Canadian prairie wetlands. Environ Toxicol Chem 30(9):1982–1989. doi:10.1002/etc.598

    Article  CAS  Google Scholar 

  • Drzewicz P, Trojanowicz M, Zona R, Solar S, Gehringer P (2004) Decomposition of 2,4-dichlorophenoxyacetic acid by ozonation, ionizing radiation as well as ozonation combined with ionizing radiation. Radiat Phys Chem 69(4):281–287. doi:10.1016/s0969-806x(03)00471-7

    Article  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, D. C

    Google Scholar 

  • Environment Canada (2011) Presence and levels of priority pesticides in selected Canadian aquatic ecosystems. Environment Canada, Ottawa

  • Environment Canada (1976) Guidelines for effluent quality and wastewater treatment at federal establishments. Federal Activities Environmental Branch, Environmental Conservation Directorate, Ottawa

    Google Scholar 

  • Evangelista S, Cooper DG, Yargeau V (2010) The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids. Chemosphere 79(11):1084–1088. doi:10.1016/j.chemosphere.2010.03.018

    Article  CAS  Google Scholar 

  • Federal-Provincial Subcommittee on Drinking Water (1996) Guidelines for Canadian drinking water quality. Health Canada, Ottawa

    Google Scholar 

  • Flox C, Garrido JA, Rodríguez RM, Cabot P-L, Centellas F, Arias C, Brillas E (2007) Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal Today 129(1–2):29–36. doi:10.1016/j.cattod.2007.06.049

    Article  CAS  Google Scholar 

  • Ghoshdastidar AJ, Saunders JE, Brown KH, Tong AZ (2012) Membrane bioreactor treatment of commonly used organophosphate pesticides. J Environ Sci Health B 47(7):742–750

    Article  CAS  Google Scholar 

  • Glozier N, Struger J, Cessna A, Gledhill M, Rondeau M, Ernst W, Sekela M, Cagampan S, Sverko E, Murphy C, Murray J, Donald D (2012) Occurrence of glyphosate and acidic herbicides in select urban rivers and streams in Canada, 2007. Environ Sci Pollut Res 19(3):821–834. doi:10.1007/s11356-011-0600-7

    Article  CAS  Google Scholar 

  • González S, Petrovic M, Barceló D (2007) Removal of a broad range of surfactants from municipal wastewater—comparison between membrane bioreactor and conventional activated sludge treatment. Chemosphere 67(2):335–343. doi:10.1016/j.chemosphere.2006.09.056

    Article  Google Scholar 

  • Hamilton D, Crossley S (2004) Introduction. In: Hamilton D, Crossley S (eds) Pesticide residues in Food and drinking water: Human exposure and risks, vol 2. Agrochemicals and Plant Protection. Wiley. doi:10.1002/0470091614

  • Harrison I, Williams GM, Carlick CA (2003) Enantioselective biodegradation of mecoprop in aerobic and anaerobic microcosms. Chemosphere 53(5):539–549. doi:10.1016/s0045-6535(03)00456-9

    Article  CAS  Google Scholar 

  • Haugland RA, Schlemm DJ, Lyons RP, Sferra PR, Chakrabarty AM (1990) Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl Environ Microbiol 56(5):1357–1362

    CAS  Google Scholar 

  • Heron G, Christensen TH (1992) Degradation of the herbicide mecoprop in an aerobic aquifer determined by laboratory batch studies. Chemosphere 24(5):547–557. doi:10.1016/0045-6535(92)90211-9

    Article  CAS  Google Scholar 

  • Kim K-P, Ahmed Z, Ahn K-H, Paeng K-J (2009) Biodegradation of two model estrogenic compounds in a preanoxic/anaerobic nutrient removing membrane bioreactor. Desalination 243(1–3):265–272. doi:10.1016/j.desal.2007.12.057

    Article  CAS  Google Scholar 

  • Kose B, Ozgun H, Ersahin ME, Dizge N, Koseoglu-Imer DY, Atay B, Kaya R, Altınbas M, Sayılı S, Hoshan P, Atay D, Eren E, Kinaci C, Koyuncu I (2012) Performance evaluation of a submerged membrane bioreactor for the treatment of brackish oil and natural gas field produced water. Desalination 285:295–300. doi:10.1016/j.desal.2011.10.016

    Article  CAS  Google Scholar 

  • Kreuger J, Brink N (1988) Losses of pesticides from arable land. Växtskyddsrapporter Jordbruk 49:50–61

    CAS  Google Scholar 

  • Kurt-Karakus PB, Bidleman TF, Muir DCG, Cagampan SJ, Struger J, Sverko E, Small JM, Jantunen LM (2008) Chiral current-use herbicides in Ontario streams. Environ Sci Technol 42(22):8452–8458. doi:10.1021/es8011854

    Article  CAS  Google Scholar 

  • Li X-y, Chu HP (2003) Membrane bioreactor for the drinking water treatment of polluted surface water supplies. Water Res 37(19):4781–4791. doi:10.1016/s0043-1354(03)00424-x

    Article  CAS  Google Scholar 

  • Lin H, Chen J, Wang F, Ding L, Hong H (2011) Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination 280(1–3):120–126. doi:10.1016/j.desal.2011.06.058

    Article  CAS  Google Scholar 

  • Liu Q, Wang XC, Liu Y, Yuan H, Du Y (2010) Performance of a hybrid membrane bioreactor in municipal wastewater treatment. Desalination 258(1–3):143–147. doi:10.1016/j.desal.2010.03.024

    Article  CAS  Google Scholar 

  • Lu M-C, Chen J-N (1997) Pretreatment of pesticide wastewater by photocatalytic oxidation. Water Sci Technol 36(2–3):117–122. doi:10.1016/s0273-1223(97)00377-6

    CAS  Google Scholar 

  • Magga Z, Tzovolou DN, Theodoropoulou MA, Dalkarani T, Pikios K, Tsakiroglou CD (2008) Soil column experiments used as a means to assess transport, sorption, and biodegradation of pesticides in groundwater. J Environ Sci Health B 43(8):732–741. doi:10.1080/03601230802388868

    Article  CAS  Google Scholar 

  • Mangat SS, Elefsiniotis P (1999) Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in sequencing batch reactors. Water Res 33(3):861–867. doi:10.1016/s0043-1354(98)00259-0

    Article  CAS  Google Scholar 

  • Marrot B, Barrios-Martinez A, Moulin P, Roche N (2004) Industrial wastewater treatment in a membrane bioreactor: a review. Environ Prog 23(1):59–68. doi:10.1002/ep.10001

    Article  CAS  Google Scholar 

  • Melin T, Jefferson B, Bixio D, Thoeye C, De Wilde W, De Koning J, van der Graaf J, Wintgens T (2006) Membrane bioreactor technology for wastewater treatment and reuse. Desalination 187(1–3):271–282. doi:10.1016/j.desal.2005.04.086

    Article  CAS  Google Scholar 

  • Nitschke L, Wilk A, Schüssler W, Metzner G, Lind G (1999) Biodegradation in laboratory activated sludge plants and aquatic toxicity of herbicides. Chemosphere 39(13):2313–2323. doi:10.1016/s0045-6535(99)00140-x

    Article  CAS  Google Scholar 

  • Norris LA, Montgomery ML (1975) Dicamba residues in streams after forest spraying. Bull Environ Contam Toxicol 13(1):1–8. doi:10.1007/bf01684856

    Article  CAS  Google Scholar 

  • Paterlini WC, Nogueira RFP (2005) Multivariate analysis of photo-Fenton degradation of the herbicides tebuthiuron, diuron and 2,4-D. Chemosphere 58(8):1107–1116. doi:10.1016/j.chemosphere.2004.09.068

    Article  CAS  Google Scholar 

  • Petrovic M, de Alda MJL, Diaz-Cruz S, Postigo C, Radjenovic J, Gros M, Barcelo D (2009) Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration. Phil Trans R Soc A Math Phys Eng Sci 367(1904):3979–4003. doi:10.1098/rsta.2009.0105

    Article  CAS  Google Scholar 

  • Phillips PJ, Bode RW (2004) Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Pest Manag Sci 60(6):531–543. doi:10.1002/ps.879

    Article  CAS  Google Scholar 

  • Prado J, Arantegui J, Chamarro E, Esplugas S (1994) Degradation of 2, 4-D by ozone and light. Ozone-Sci Eng 16(3):235–245

    Google Scholar 

  • Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387(4):1365–1377. doi:10.1007/s00216-006-0883-6

    Article  CAS  Google Scholar 

  • Rawn DFK, Halldorson THJ, Woychuk RN, Muir DCG (1999) Pesticides in the Red River and its tributaries in Southern Manitoba: 1993–95. Water Qual Res J Can 34(2):183–219

    CAS  Google Scholar 

  • Shariati FP, Mehrnia MR, Salmasi BM, Heran M, Wisniewski C, Sarrafzadeh MH (2010) Membrane bioreactor for treatment of pharmaceutical wastewater containing acetaminophen. Desalination 250(2):798–800. doi:10.1016/j.desal.2008.11.044

    Article  CAS  Google Scholar 

  • Somasundaram L, Coats JR, Racke KD, Stahr HM (1990) Application of the microtox system to assess the toxicity of pesticides and their hydrolysis metabolites. Bull Environ Contam Toxicol 44(2):254–259. doi:10.1007/bf01700144

    Article  CAS  Google Scholar 

  • Sun Y, Pignatello JJ (1995) Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D. Environ Sci Technol 29(8):2065–2072. doi:10.1021/es00008a028

    Article  CAS  Google Scholar 

  • Toräng L, Nyholm N, Albrechtsen H-J (2003) Shifts in biodegradation kinetics of the herbicides MCPP and 2,4-D at low concentrations in aerobic aquifer materials. Environ Sci Technol 37(14):3095–3103. doi:10.1021/es026307a

    Article  Google Scholar 

  • University of Hertfordshire (2012) Pesticide Properties Database (PPDB). Agriculture & Environment Research Unit, University of Hertfordshire. http://sitem.herts.ac.uk/aeru/footprint/en/index.htm. Accessed March 26, 2012

  • Visvanathan C, Aim RB, Parameshwaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 30:1–48

    Article  CAS  Google Scholar 

  • Wang Q, Lemley AT (2001) Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environ Sci Technol 35(22):4509–4514. doi:10.1021/es0109693

    Article  CAS  Google Scholar 

  • Wells MJM, Yu LZ (2000) Solid-phase extraction of acidic herbicides. J Chromatogr A 885(1–2):237–250. doi:10.1016/s0021-9673(00)00206-5

    CAS  Google Scholar 

  • Woudneh MB, Ou Z, Sekela M, Tuominen T, Gledhill M (2009) Pesticide multiresidues in waters of the lower Fraser valley, British Columbia, Canada. Part I. Surface water. J Environ Qual 38(3):940–947

    Article  CAS  Google Scholar 

  • Yang J, Wang XZ, Hage DS, Herman PL, Weeks DP (1994) Analysis of dicamba degradation by pseudomonas maltophilia using high-performance capillary electrophoresis. Anal Biochem 219(1):37–42. doi:10.1006/abio.1994.1228

    Article  CAS  Google Scholar 

  • Zipper C, Bolliger C, Fleischmann T, Suter MJF, Angst W, Müller MD, Kohler H-PE (1999) Fate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis. Biodegradation 10(4):271–278. doi:10.1023/a:1008396022622

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Acadia University, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Nova Scotia Health Research Foundation (NSHRF). In addition, the authors would like to thank Dr. Yiming Zeng (Superstring MBR Technology, Corp.), Dr. Martin Tango (School of Engineering, Acadia University), and Jim Frazee (E&Q Consulting Limited) for their technical assistance and helpful discussion in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Z. Tong.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoshdastidar, A.J., Tong, A.Z. Treatment of 2,4-D, mecoprop, and dicamba using membrane bioreactor technology. Environ Sci Pollut Res 20, 5188–5197 (2013). https://doi.org/10.1007/s11356-013-1498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1498-z

Keywords

Navigation