Skip to main content

Advertisement

Log in

Reconstruction of the environmental evolution of a Sicilian saltmarsh (Italy)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study deals with the reconstruction of the environmental evolution of a Trapani saltmarsh (southwestern Sicily, Italy) by combining different analytical approaches such as metal content evaluation, low-field nuclear magnetic resonance (NMR) relaxometry, and benthic foraminifera identification. A 41 cm core was collected in the sediments of a Trapani saltmarsh (southwestern Sicily, Italy) at a water depth of about 50 cm. Different time intervals were recognized, each characterized by peculiar features that testify different environmental conditions. In particular, the bottom layers of the sediment core (41–28 cm) comprised the lowest amount of mud fraction, only some selected metals, and the lowest foraminiferal density. Here, co-occurrence of abundant microcrystals of gypsum and Ammonia tepida is indicative of hyper-saline conditions. In the sediments from 28 to 6 cm, mud fraction and number of metal elements resulted higher due to the increase of the anthropogenic pressure. The sediments in the last time interval, corresponding to the environmental recovery of the saltmarsh, showed an increase of foraminiferal density, a decrease of the mud fraction, and a trend in the metal concentration attributable to the protection policy applied since 1990. NMR relaxometry parameters highlighted the changes of sediment chemical–physical heterogeneity going from the bottom to the top of the core. These heterogeneities have been related to the different intervals recognized as aforementioned. The present study highlights how the anthropogenic pressure modifies the environmental conditions of a transitional ecosystem like saltmarshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abragam A (1983) Principles of nuclear magnetism. Oxford University Press, USA

    Google Scholar 

  • Albano AM, Beckmann PA, Carrington ME, Fusco FA, O’Neil AE, Scott ME (1983) A general NMR spectral density and its experimental verification. J Phys C Solid State Phys 16:L979–L983

    Article  CAS  Google Scholar 

  • Alve E (1991) Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sørfjord, Western Norway. J Foraminifer Res 21:1–19

    Article  Google Scholar 

  • Armynot du Châtelet E, Debenay JP, Soulard R (2004) Foraminiferal proxies for pollution monitoring in moderately polluted harbors. Environ Pollut 127:27–40

    Article  Google Scholar 

  • Bakhmutov VI (2004) Pratical NMR relaxation for chemists. Wiley, Chichester

    Book  Google Scholar 

  • Borgia GC, Brown RJS, Fantazzini P (1998) Uniform-penalty inversion of multiexponential decay data. J Magn Reson 132:65–77

    Article  CAS  Google Scholar 

  • Borgia GC, Brown RJS, Fantazzini P (2000) Uniform-penalty inversion of multiexponential decay data: II. Data spacing, T2 data, systematic data errors, and diagnostics. J Magn Reson 147:273–285

    Article  CAS  Google Scholar 

  • Caruso A, Cosentino C, Tranchina L, Brai M (2011) Response of benthic foraminifera to heavy metal contamination in marine sediments (Sicilian coasts, Mediterranean Sea). Chem Ecol 27:1–22

    Article  Google Scholar 

  • Cearreta A, Irabien MJ, Leorri E, Yusta I, Croudace IW, Cundy AB (2000) Recent anthropogenic impacts on the Bilbao estuary, Northern Spain: geochemical and microfaunal evidence. Estuar Coast Shelf Sci 50:571–592

    Article  CAS  Google Scholar 

  • Cearreta A, Irabien MJ, Leorri E, Yusta I, Quintanilla A, Zabaleta A (2002) Environmental transformation of the Bilbao estuary, N. Spain: microfaunal and geochemical proxies in the recent sedimentary record. Mar Poll Bull 44:487–503

    Article  CAS  Google Scholar 

  • Coccioni R (2000) Benthic foraminifera as bioindicators of heavy metal pollution—a case study from the Goro Lagoon (Italy). In: Martin RE (ed) Environmental micropaleontology. Plenum, New York, pp 71–103

    Chapter  Google Scholar 

  • Conte P, Maccotta A, De Pasquale C, Bubici S, Alonzo G (2009) Dissolution mechanism of crystalline cellulose in H3PO4 as assessed by high-field NMR spectroscopy and fast field cycling NMR relaxometry. J Agric Food Chem 57:8748–8752

    Article  CAS  Google Scholar 

  • Conte P, Abbate C, Baglieri A, Nègre M, De Pasquale C, Alonzo G, Gennari M (2011) Adsorption of dissolved organic matter on clay minerals as assessed by infra-red, CPMAS 13C NMR spectroscopy and low field T1 NMR relaxometry. Org Geochem 42:972–977

    Article  CAS  Google Scholar 

  • Conte P, Marsala V, De Pasquale C, Bubici S, Valagussa M, Pozzi A, Alonzo G (2012) Nature of water–biochar interface interactions. GCB Bioenergy. doi:10.1111/gcbb.12009

  • De Pasquale C, Marsala V, Berns AE, Valagussa M, Pozzi A, Alonzo G, Conte P (2012) Fast field cycling NMR relaxometry characterization of biochars obtained from an industrial thermochemical process. J Soil Sediment 12:1211–1221

    Article  CAS  Google Scholar 

  • Debenay JP, Guillou JJ (2002) Ecological transitions indicated by foraminiferal assemblages in paralic environments. Estuaries 25:1107–1120

    Article  Google Scholar 

  • Debenay JP, Guillou JJ, Redois F, Geslin E (2000) Distribution trends of foraminiferal assemblages in paralic environments: a base for using foraminifera as early warning indicators of anthropic stress. In: Martin R (ed) Envir Micropal. Kluwer Acad. & Plenum, New York, pp 39–67

  • Debenay JP, Della Patrona L, Herbland A, Goguenheim H (2009) Colonization of coastal environments by foraminifera: insight from shrimp ponds in New Caledonia. J Foraminifer Res 39:249–266

    Article  Google Scholar 

  • Doody JP (2008) Saltmarsh conservation, management and restoration. Springer, Dusseldorf

    Book  Google Scholar 

  • Dunn K-J, Bergman DJ, Latorraca GA (2002) Handbook of geographic exploration–seismic exploration: nuclear magnetic resonance petrophysical and logging applications. Elsevier, Oxford

    Google Scholar 

  • Ferrante G, Sykora S (2005) Technical aspects of fast field cycling. Adv Inorg Chem 57:405–470

    Article  CAS  Google Scholar 

  • Ferraro L, Sprovieri M, Alberico I, Lirer F, Prevedello L, Marsella E (2006) Benthic foraminifera and heavy metals distribution: a case study from the Naples harbour (Tyrrhenian Sea, Southern Italy). Environ Pollut 142:274–287

    Article  CAS  Google Scholar 

  • França S, Vinagre C, Caçador I, Cabral HR (2005) Heavy metal concentrations in sediment, benthic invertebrates and fish in three saltmarsh areas subjected to different pollution loads in the Taguas Estuary (Portugal). Mar Pollut Bull 50:993–1018

    Article  Google Scholar 

  • Frontalini F, Coccioni R (2008) Benthic foraminifera for heavy metal pollution monitoring: a case study from the central Adriatic Sea coast of Italy. Estuar Coast Shelf Sci 76:404–417

    Article  Google Scholar 

  • Frontalini F, Buosi C, Da Pelo S, Coccioni R, Cherchi A, Bucci C (2009) Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy). Mar Pollut Bull 58:858–877

    Article  CAS  Google Scholar 

  • Frontalini F, Armynot du Châtelet E, Debenay JP, Coccioni R, Bacalà G (2010) Benthic foraminifera in coastal lagoons: distributional patterns and biomonitoring implications. In: Friedman AG (ed) Lagoons: biology, management and environmental impact. Nova, New York, pp 39–72

    Google Scholar 

  • Geslin E, Debenay JP, Duleba W, Bonetti C (2002) Morphological abnormalities of foraminiferal tests in Brazilian environments: comparison between polluted and non-polluted areas. Mar Micropaleontol 45:151–168

    Article  Google Scholar 

  • Godefroy S, Korb JP, Fleury M, Bryant RG (2001) Surface nuclear magnetic relaxation and dynamics of water and oil in macroporous media. Phys Rev E 64(1–13):021605

    Article  CAS  Google Scholar 

  • Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275

    Article  CAS  Google Scholar 

  • Halle B, Johannesson H, Venu K (1998) Model-free analysis of stretched relaxation dispersions. J Magn Reson 135:1–13

    Article  CAS  Google Scholar 

  • Kennish MJ (1992) Polynuclear aromatic hydrocarbons. In: Ecology of estuaries. CRC, Boca Raton, pp 133–181

    Google Scholar 

  • Kiihne S, Bryant RG (2000) Protein-bound water molecule counting by resolution of 1H spin–lattice relaxation mechanism. Biophys J 78:2163–2169

    Article  CAS  Google Scholar 

  • Kimmich R, Anoardo E (2004) Field-cycling NMR relaxometry. Prog Nucl Magn Reson Spectrosc 44:257–320

    Article  CAS  Google Scholar 

  • Koretsky CM, Cuellar A, Haveman M, Beuving L, Shattuck T, Wagner M (2008) Influence of Spartina and Juncus on saltmarsh sediments. II. Trace element geochemistry. Chem Geol 255:100–113

    Article  CAS  Google Scholar 

  • Laudicina VA, De Pasquale C, Conte P, Badalucco L, Alonzo G, Palazzolo E (2012) Effects of afforestation with four unmixed plant species on the soil–water interactions in a semiarid Mediterranean region (Sicily, Italy). J Soil Sediment 12:1222–1230

    Article  Google Scholar 

  • Lowenstein TK, Hardie LA (1985) Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–644

    Article  CAS  Google Scholar 

  • Luchinat C, Parigi G (2008) Nuclear relaxometry helps designing systems for solution DNP on proteins. Appl Magn Reson 34:379–392

    Article  CAS  Google Scholar 

  • McDonald PJ, Korb J-P, Mitchell J, Monteilhet L (2005) Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study. Phys Rev E 72:011409

    Article  CAS  Google Scholar 

  • Morozova-Roche LA, Jones JA, Noppe W, Dobson CM (1999) Independent nucleation and heterogeneous assembly of structure during folding of equine lysozyme. J Mol Biol 289:1055–1073

    Article  CAS  Google Scholar 

  • Moss BA (1996) A land awash with nutrients—the problem of eutrophication. Chem Ind 11:407–411

    Google Scholar 

  • Pohlmeier A, Haber-Pohlmeier S, Stapf S (2009) A fast field cycling nuclear magnetic resonance relaxometry study of natural soils. Vadose Zone J 8:735–742

    Article  CAS  Google Scholar 

  • Scott DB, Medioli FS, Schafer CT (2001) Monitoring in coastal environments using Foraminifera and Thecamoebian indicators. Cambridge University Press, London

    Book  Google Scholar 

  • Sen Gupta BK (2002) Foraminifera in marginal marine environments. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic, Dordrecht, pp 103–122

    Google Scholar 

  • Tranchina L, Basile S, Brai M, Caruso A, Cosentino C, Miccichè S (2008) Distribution of heavy metals in marine sediments of Palermo gulf (Sicily, Italy). Water Air Soil Pollut 191:245–256

    Article  CAS  Google Scholar 

  • Vento R (1998) L’industria del sale marino in Sicilia. Associazione Nazionale Ludi di Enea, Trapani, in Italian

    Google Scholar 

  • Wilson HM, Gibson MT, O’Sullivan PE (1993) Analysis of current policies and alternative strategies for the reduction of nutrients loads on eutrophication lakes: the example of Slapton Ley, Devon. Aquat Conserv 3:239–251

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Silvana Piacentino, responsible for Natural Reserve of Trapani and Paceco Saltmarshes, WWF Italy, for her assistance in sample collection and historical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pellegrino Conte.

Additional information

Responsible editor: Vera Slaveykova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maccotta, A., De Pasquale, C., Caruso, A. et al. Reconstruction of the environmental evolution of a Sicilian saltmarsh (Italy). Environ Sci Pollut Res 20, 4847–4858 (2013). https://doi.org/10.1007/s11356-012-1445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1445-4

Keywords

Navigation