Skip to main content

Advertisement

Log in

Arsenic contamination in the freshwater fish ponds of Pearl River Delta: bioaccumulation and health risk assessment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05–3.01 mg kg−1 wet weight (w. wt) and 8.41–22.76 mg kg−1 dry weight (d. wt), respectively. In addition, the As content was positively correlated (p < 0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ 15N. The slope of the regression (−0.066 and −0.078) of the log transformed As concentrations and δ 15N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10−4) stipulated by the USEPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asante KA, Agusa T, Kubota R, Mochizuki H, Ramu K, Nishida S, Ohta S, Yeh HM, Subramanian A, Tanabe S (2010) Trace elements and stable isotope ratios (delta(13)C and delta(15)N) in fish from deep-waters of the Sulu Sea and the Celebes Sea. Mar Pollut Bull 60:1560–1570

    Article  CAS  Google Scholar 

  • Barwick M, Maher W (2003) Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res 56:471–502

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic — a review: Part I. Occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  • Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351:247–263

    Article  Google Scholar 

  • Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010) Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Aquat Toxicol 98:34–43

    Article  CAS  Google Scholar 

  • Chen TB, Wong JWC, Zhou HY, Wong MH (1997) Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environ Pollut 96:61–68

    Article  CAS  Google Scholar 

  • Chen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Folt CL (2000a) Bioaccumulation and diminution of arsenic and lead in a freshwater food web. Environ Sci Technol 34:3878–3884

    Article  CAS  Google Scholar 

  • Chen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Folt CL (2000b) Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr 45:1525–1536

    Article  CAS  Google Scholar 

  • Cheng Z, Liang P, Shao DD, Wu SC, Nie XP, Chen KC, Li KB, Wong MH (2011) Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta. Arch Environ Con Tox 61:491–499

    Article  CAS  Google Scholar 

  • Cheung KC, Leung HM, Wong MH (2008) Metal concentrations of common freshwater and marine fish from the Pearl River Delta, South China. Arch Environ Contam Tox 54:705–715

    Article  CAS  Google Scholar 

  • Cui BS, Zhang QJ, Zhang KJ, Liu XH, Zhang HG (2011) Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environ Pollut 159:1297–1306

    Article  CAS  Google Scholar 

  • Dallinger R (1994) Invertebrate organisms as biological indicators of heavy metal pollution. Appl Biochem Biotechnol 48:27–31

    Article  CAS  Google Scholar 

  • Diaz-de Alba M, Galindo-Riano MD, Casanueva-Marenco MJ, Garcia-Vargas M, Kosore CM (2011) Assessment of the metal pollution, potential toxicity and speciation of sediment from Algeciras Bay (South of Spain) using chemometric tools. J Hazard Mater 190:177–187

    Article  CAS  Google Scholar 

  • Fisk AT, Hobson KA, Norstrom RJ (2001) Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the northwater polynya marine food web. Environ Sci Technol 35:723–728

    Google Scholar 

  • Goessler W, Schlagenhaufen C, Kuehnelt D, Greschonig H, Irgolic KJ (1997) Can humans metabolize arsenic compounds to arsenobetaine? Appl Organomet Chem 11:327–335

    Article  CAS  Google Scholar 

  • Grund SC, Hanusch K, Wolf HU (2008): Arsenic and arsenic compounds. Ullmann's encyclopedia of industrial chemistry. Wiley-VCH, Germany

  • Hamilton EI (2000) Environmental variables in a holistic evaluation of land contaminated by historic mine wastes: a study of multi-element mine wastes in West Devon, England using arsenic as an element of potential concern to human health. Sci Total Environ 249:171–221

    Article  CAS  Google Scholar 

  • Hobson KA, Ambrose WG, Renaud PE (1995) Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: Insights from delta C-13 and delta N-15 analysis. Mar Ecol Prog Ser 128:1–10

    Article  Google Scholar 

  • Kar S, Maity JP, Jean JS, Liu CC, Liu CW, Bundschuh J, Lu HY (2011) Health risks for human intake of aquacultural fish: arsenic bioaccumulation and contamination. J Environ Sci Heal A 46:1266–1273

    CAS  Google Scholar 

  • Kuroiwa T, Ohki A, Naka K, Maeda S (1994) Biomethylation and biotransformation of arsenic in a fresh-water food-chain — green-alga (Chlorella vulgaris)–]shrimp (Neocaridina denticulata)–]killifish (Oryzias latipes). Appl Organomet Chem 8:325–333

    Article  CAS  Google Scholar 

  • Leung SSF, Chan SM, Lui S, Lee WTK, Davies DP (2000) Growth and nutrition of Hong Kong children aged 0–7 years. J Paediatr Child H 36:56–65

    Article  CAS  Google Scholar 

  • Liang CP, Liu CW, Jang CS, Wang SW, Lee JJ (2011) Assessing and managing the health risk due to ingestion of inorganic arsenic from fish and shellfish farmed in blackfoot disease areas for general Taiwanese. J Hazard Mater 186:622–628

    Article  CAS  Google Scholar 

  • Lin MC, Liao CM (2008) Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan. Food Chem Toxicol 46:701–709

    Article  CAS  Google Scholar 

  • Lin HT, Chen SW, Shen CJ, Chu C (2008) Arsenic speciation in fish on the market. J Food Drug Anal 16:70–75

    CAS  Google Scholar 

  • Loska K, Wiechula D, Barska B, Cebula E, Chojnecka A (2003) Assessment of arsenic enrichment of cultivated soils in southern Poland. Pol J Environ Stud 12:187–192

    CAS  Google Scholar 

  • Maher WA, Foster SD, Taylor AM, Krikowa F, Duncan EG, Chariton AA (2011) Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia. Environ Chem 8:9–18

    Article  CAS  Google Scholar 

  • McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017–1037

    Article  CAS  Google Scholar 

  • Moreda-Pineiro J, Moreda-Pineiro A, Romaris-Hortas V, Moscoso-Perez C, Lopez-Mahia P, Muniategui-Lorenzo S, Bermejo-Barrera P, Prada-Rodriguez D (2011) In-vivo and in-vitro testing to assess the bioaccessibility and the bioavailability of arsenic, selenium and mercury species in food samples. Trac-Trend Anal Chem 30:324–345

    Article  CAS  Google Scholar 

  • Moreda-Pineiro J, Alonso-Rodriguez E, Romaris-Hortas V, Moreda-Pineiro A, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D, Bermejo-Barrera P (2012) Assessment of the bioavailability of toxic and non-toxic arsenic species in seafood samples. Food Chem 130:552–560

    Article  CAS  Google Scholar 

  • Müller G (1981) Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflüsse Eine Bestandsaufnahme. Chem Ztg 105:157–164

    Google Scholar 

  • Munoz O, Devesa V, Suner MA, Velez D, Montoro R, Urieta I, Macho ML, Jalon M (2000) Total and inorganic arsenic in fresh and processed fish products. J Agr Food Chem 48:4369–4376

    Article  CAS  Google Scholar 

  • Nfon E, Cousins IT, Jarvinen O, Mukherjee AB, Verta M, Broman D (2009) Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea. Sci Total Environ 407:6267–6274

    Article  CAS  Google Scholar 

  • Ng JC (2005) Environmental contamination of arsenic and its toxicological impact on humans. Environ Chem 2:146–160

    Article  CAS  Google Scholar 

  • Petursdottir AH, Gunnlaudsdottir H, Jorundsdottir H, Raab A, Krupp EM, Feldmann J (2012) Determination of inorganic arsenic in seafood: emphasizing the need for certified reference materials. Pure Appl Chem 84:191–202

    CAS  Google Scholar 

  • Pikaray S, Banerjee S, Mukherji S (2005) Sorption of arsenic onto Vindhyan shales: role of pyrite and organic carbon. Curr Sci 88:1580–1585

    Google Scholar 

  • Presley B, Taylor R, Boothe P (1992) Trace metal concentrations in sediments of the Eastern Mississippi Bight. Mar Environ Res 33:267–282

    Article  CAS  Google Scholar 

  • Quevauviller P (1998) Operationally defined extraction procedures for soil and sediment analysis — I. Standardization. Trac-Trend Anal Chem 17:289–298

    Article  CAS  Google Scholar 

  • Rath P, Panda UC, Bhatta D, Sahu KC (2009) Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahmani and Nandira Rivers, India. J Hazard Mater 163:632–644

    Article  CAS  Google Scholar 

  • Rauret G, Lopez-Sanchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monitor 1:57–61

    Article  CAS  Google Scholar 

  • Rodriguez IB, Raber G, Goessler W (2009) Arsenic speciation in fish sauce samples determined by HPLC coupled to inductively coupled plasma mass spectrometry. Food Chem 112:1084–1087

    Article  CAS  Google Scholar 

  • Rosemond S, Xie Q, Liber K (2008) Arsenic concentration and speciation in five freshwater fish species from Back Bay near Yellowknife, NT, CANADA. Environ Monit Assess 147:199–210

    Article  CAS  Google Scholar 

  • Schaeffer R, Francesconi KA, Kienzl N, Soeroes C, Fodor P, Varadi L, Raml R, Goessler W, Kuehnelt D (2006) Arsenic speciation in freshwater organisms from the river Danube in Hungary. Talanta 69:856–865

    Article  CAS  Google Scholar 

  • Slejkovec Z, Bajc Z, Doganoc DZ (2004) Arsenic speciation patterns in freshwater fish. Talanta 62:931–936

    Article  CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    Article  CAS  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  • Suzuki KT, Mandal BK (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  Google Scholar 

  • Szefer P, Ali AA, Ba-Haroon AA, Rajeh AA, Geldon J, Nabrzyski M (1999) Distribution and relationships of selected trace metals in molluscs and associated sediments from the Gulf of Aden, Yemen. Environ Pollut 106:299–314

    Article  CAS  Google Scholar 

  • Tanner PA, Leong LS, Pan SM (2000) Contamination of heavy metals in marine sediment cores from Victoria Harbour, Hong Kong. Mar Pollut Bull 40:769–779

    Article  CAS  Google Scholar 

  • Tu NP, Agusa T, Ha NN, Tuyen BC, Tanabe S, Takeuchi I (2011) Stable isotope-guided analysis of biomagnification profiles of arsenic species in a tropical mangrove ecosystem. Mar Pollut Bull 63:124–134

    Article  Google Scholar 

  • USEPA (1989) Risk assessment guidance for superfund, Vol 1. EPA/540/1-89/002. Office of Emergency and Remedial Response, USEPA, Washington, DC

    Google Scholar 

  • USEPA (1997): Determination of Carbon and Nitrogen in Sediments and Particulates of Estuarine/Coastal Waters Using Elemental Analysis. Available at: http://www.epa.gov/microbes/m440_0.pdf. Accessed 10 Aug 2011

  • USEPA (2000): Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. http://www.epa.gov/region6/6pd/qa/qadevtools/mod4references/supplemental/volume1.pdf. Accessed 11 Aug 2011

  • USEPA (2009): User' s guide (December 2009): Mid-Atlantic risk assessment http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/usersguide.htm. Accessed 16 Aug 2011.

  • USEPA (2010): Integrated Risk Information System (IRIS). Arsenic, inorganic (CASRN 7440-38-2), http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList. Accessed 17 Aug 2011.

  • Wang XL, Sato T, Xing BS, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350:28–37

    Article  CAS  Google Scholar 

  • Wang SL, Cao XZ, Lin CY, Chen XG (2010) Arsenic content and fractionation in the surface sediments of the Guangzhou section of the Pearl River in Southern China. J Hazard Mater 183:264–270

    Article  CAS  Google Scholar 

  • Weatherley A, Cogger B (1977) Fish culture: problems and prospects. Science 197:427

    Article  CAS  Google Scholar 

  • Wong CK, Chu KH, Chen QC, Xl M (1995) Envrionmental research in Pearl River and coastal areas. Guangdong Higher Education Press, Guangdong, pp 1–192

    Google Scholar 

  • Wong M, Cheung K, Yediler A (2004) The dike-pond systems in South China: past, present and future. In: Wong M (ed) Wetlands ecosystems in Asia: function and management. Elsevier, Amsterdam, pp 69–86

    Google Scholar 

  • Wong CSC, Duzgoren-Aydin NS, Aydin A, Wong MH (2006) Sources and trends of environmental mercury emissions in Asia. Sci Total Environ 368:649–662

    Article  CAS  Google Scholar 

  • Zhou HY, Wong MH (2000) Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Res 34:4234–4242

    Article  CAS  Google Scholar 

  • Zwicker R, Zwicker BM, Laoharojanaphand S, Chatt A (2011) Determination of arsenic (III) and arsenic (V) in freshwater biological samples from Thailand by solvent extraction and neutron activation. J Radioanal Nucl Ch 287:211–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Environmental and Conservation Fund (37/2009) and Special Equipment Grant (SEG, HKBU 09) of the Research Grants Council of Hong Kong are gratefully acknowledged. The authors thank Kunci Chen, Kaibin Li (Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China), and Jufang Chen (Institute of the Hydrobiology, Jinan University, Guangzhou, PR China) for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Ping Nie or Ming-Hung Wong.

Additional information

Responsible editor: Vera Slaveykova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z., Chen, KC., Li, KB. et al. Arsenic contamination in the freshwater fish ponds of Pearl River Delta: bioaccumulation and health risk assessment. Environ Sci Pollut Res 20, 4484–4495 (2013). https://doi.org/10.1007/s11356-012-1382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1382-2

Keywords

Navigation