Skip to main content
Log in

Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier–Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H = 1/2, 3/4, and 1) and wind directions (θ = 90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H = 1/2 and 1 and wind directions θ = 112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ANSYS Inc. (2010) Fluent software. http://www.fluent.com

  • Assimakopoulos VD, Apsimon HM, Moussiopoulos NA (2003) Numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations. Atmos Environ 37(29):4037–4049

    Article  CAS  Google Scholar 

  • Baik J-J, Kim J-J (2002) On the escape of pollutants from urban street canyons. Atmos Environ 36:527–536

    Article  CAS  Google Scholar 

  • Baik J-J, Park R-S, Chun H-Y, Kim J-J (2000) A laboratory model of urban street-canyon flows. J Appl Meteorol 39:1592–1600

    Article  Google Scholar 

  • Caton F, Britter RE, Dalziel S (2003) Dispersion mechanisms in a street canyon. Atmos Environ 37:693–702

    Article  CAS  Google Scholar 

  • Chan TL, Dong G, Cheung CS, Leung CW, Wong CP, Wung WT (2001a) A Monte Carlo simulation of nitrogen oxides dispersion from a vehicular exhaust plume and its sensitivity studies. Atmos Environ 35:6117–6127

    Article  CAS  Google Scholar 

  • Chan AT, Au WTW, So ESP (2001b) Strategic guidelines for street canyon geometry to achieve sustainable street air quality. Atmos Environ 35:5681–5691

    Article  Google Scholar 

  • Chan AT, Au WTW, So ESP (2003) Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part II: multiple canopies and canyons. Atmos Environ 37:2761–2772

    Article  CAS  Google Scholar 

  • Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteorog Atmos Phys 87:167–196

    Google Scholar 

  • Chang CH, Meroney RN (2001) Numerical and physical modeling of bluff body flow and dispersion in urban street canyons. J Wind Eng Ind Aerodyn 89(14–15):1325–1334

    Article  Google Scholar 

  • Cheng WC, Liu C-H, Leung DYC (2009) On the correlation of air and pollutant exchange for street canyons in combined wind-buoyancy-driven flow. Atmos Environ 43:3682–3690

    Article  CAS  Google Scholar 

  • Costabile F, Allegrini I (2007) Measurements and analyses of nitrogen oxides and ozone in the yard and on the roof of a street-canyon in Suzhou. Atmos Environ 41:6637–6647

    Article  CAS  Google Scholar 

  • DePaul FT, Sheih CM (1986) Measurements of wind velocities in a street canyon. Atmos Environ 20:455–459

    Article  Google Scholar 

  • Di Sabatino S, Buccolieri R, Pulvirenti B, Britter RE (2008) Flow and pollutant dispersion in street canyons using FLUENT and ADMS-Urban. Environ Model Assess 13:369–381

    Article  Google Scholar 

  • Eliasson I, Offerle B, Grimmond CSB, Lindqvist S (2006) Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40:1–16

    Article  CAS  Google Scholar 

  • Hanna SR (1988) Air quality model evaluation and uncertainty. J Air Pollut Control Assoc 38:406–412

    CAS  Google Scholar 

  • Hanna SR (1989) Confidence limits for air quality model evaluations as estimated by bootstrap and jackknife resampling methods. Atmos Environ 23:1385–1398

    Article  CAS  Google Scholar 

  • Hanna SR (1993) Uncertainties in air quality model predictions. Bound-Layer Meteorol 62:3–20

    Article  Google Scholar 

  • Hanna SR, Chang JC, Strimaitis DG (1993a) Hazardous gas model evaluation with field observations. Atmos Environ 27A:2265–2285

    CAS  Google Scholar 

  • Hanna SR, Chang JC, Strimaitis DG (1993b) Hazardous gas model evaluation with field observations. Atmos Environ 27A:2265–2285

    CAS  Google Scholar 

  • Huang Y, Jin M, Sun Y (2006) Numerical studies on airflow and pollutant dispersion in urban street canyons formed by slanted roof buildings. J Hydrodyn 19(1):100–106

    Article  Google Scholar 

  • Jeong SJ, Andrews MJ (2002) Application of the kε turbulence model to the high Reynolds number skimming flow field of an urban street canyon. Atmos Environ 36:1137–1145

    Article  CAS  Google Scholar 

  • Kastner-Klein P, Plate EJ (1999) Wind-tunnel study of concentration fields in street canyons. Atmos Environ 33:3973–3979

    Article  CAS  Google Scholar 

  • Kastner-Klein P, Fedorovich E, Rotach MW (2001) A wind tunnel study of organized and turbulent air motions in urban street canyons. J Wind Eng Aerodyn 89:849–861

    Article  Google Scholar 

  • Kastner-Klein P, Berkowicz R, Britter R (2004) The influence of street architecture on flow and dispersion in streets canyons. Meteorog Atmos Phys 87:121–131

    Google Scholar 

  • Kim J-J, Baik J-J (2004) A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG kε turbulence model. Atmos Environ 38:3039–3048

    Article  CAS  Google Scholar 

  • Koutsourakis N, Neofytou P, Venetsanos AG, Bartzis JG (2004) Parametric study of the dispersion aspects in a street canyon area. Int J Environ Pollut 25:155–163

    Article  Google Scholar 

  • Launder BE, Spalding DE (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  Google Scholar 

  • Lee IY, Park HM (1994) Parameterization of the pollutant transport and dispersion in urban street canyons. Atmos Environ 28:2343–2349

    Article  CAS  Google Scholar 

  • Li X-X, Liu C, Leung DYC (2009) Numerical investigation of pollutant transport characteristics inside deep urban street canyons. Atmos Environ 43:2410–2418

    Article  CAS  Google Scholar 

  • Liu CH, Barth MC (2002) Large-eddy simulation of flow and scalar transport in a modeled street. J Appl Meteorol 41:660–673

    Article  Google Scholar 

  • Louka P, Belcher SE, Harrison RG (2000) Coupling between air flow in streets and the well-developed boundary layer aloft. Atmos Environ 34:2613–2621

    Article  CAS  Google Scholar 

  • Murena F, Favale G, Vardoulakis S, Solazzo E (2009) Modeling dispersion of traffic pollution in a deep street canyon: application of CFD and operational models. Atmos Environ 43:2303–2311

    Article  CAS  Google Scholar 

  • Nazridoust K, Ahmadi G (2006) Airflow and pollutant transport in street canyons. J Wind Eng Ind Aerodyn 94(6):491–522

    Article  Google Scholar 

  • Oke TO (1988) Street design and urban canopy layer climate. Energy Build 11:103–113

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    Google Scholar 

  • Patel VC, Kumar A (1998) Evaluation of three air dispersion models: ISCST2, ISCLT2, and screen2 for mercury emissions in an urban area. Environ Monit Assess 53:259–277

    Google Scholar 

  • Pavageau M, Schatzmann M (1999) Wind tunnel measurements of concentration fluctuation in an urban street canopy. Atmos Environ 33:3961–3971

    Google Scholar 

  • Rotach MW (1995) Profiles of turbulence statistics in and above an urban street canyon Atmospheric. Environment 29:1473–1486

    CAS  Google Scholar 

  • Sagrado APG, Beeck J, Rambaud P, Olivari D (2002) Numerical and experimental modeling of pollutant dispersion in a street canyon. J Wind Eng Ind Aerodyn 90(4–5):321–339

    Article  Google Scholar 

  • Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new κε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24:227–238

    Article  Google Scholar 

  • Soulhac L, Salizzoni P (2010) Dispersion in a street canyon for a wind direction parallel to the street axis. J Wind Eng Ind Aerodyn 98:903–910

    Article  Google Scholar 

  • Xia J, Leung DYC (2001) Pollutant dispersion in urban street canopies. Atmos Environ 35:2033–2043

    Article  CAS  Google Scholar 

  • Xia JY, Hussaini MY, Leung DYC (2005) Numerical simulation of street canyon flows with simple building geometries. J Environ Eng 131(7):1099–1105

    Article  CAS  Google Scholar 

  • Xiaomin X, Zhen H, Jiasong W (2005) Impact of building configuration on air quality in street canyon. Atmos Environ 39(25):4519–4530

    Article  Google Scholar 

  • Xiaomin X, Zhen H, Jiasong W (2006) The impact of urban street layout on local atmospheric environment. Build Environ 41:1352–1363

    Article  Google Scholar 

  • Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids 4(7):1510–1520

    Article  CAS  Google Scholar 

  • Yassin MF (2011) Impact of height and shape of building roof on air quality in urban street canyons. Atmos Environ 45(29):5220–5229

    Article  CAS  Google Scholar 

  • Yassin MF, Ohba M (2012) Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio. J Expo Anal Environ Epidemiol 22(5):502–515

    Article  CAS  Google Scholar 

  • Yassin MF, Kellnerov R, Janour Z (2008) Impact of street intersections on air quality in an urban environment. Atmos Environ 42(20):4948–4963

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to anonymous reviewers for providing valuable comments on this work. This work was carried out with funding from Kuwait University under project research No. WE01/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed F. Yassin.

Additional information

Responsible editor: Michael Matthies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yassin, M.F. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction. Environ Sci Pollut Res 20, 3975–3988 (2013). https://doi.org/10.1007/s11356-012-1270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1270-9

Keyword

Navigation