Skip to main content
Log in

The scale-free network behavior of ambient volatile organic compounds

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A scale-free network model with surface and vertical field measurements was used to identify the connectivity distribution of the scale-free network behavior of ambient volatile organic compounds (VOCs). The results show that the carbon number (C n ) with the total amount of C n compounds (P(C n )) possesses an explicit relationship with the scale-free network behavior. The proportionate coefficient (α) and exponent ( γ) of the scale-free network model with spatial and temporal variations are estimated and discussed. The analytical results demonstrate that although photochemical reactions cause the VOCs fraction variation, they do not alter the fraction of C n compounds observably. Therefore, the values of α and of γ did not vary with time, but with local regional characteristics. The results indicate that the influence of local VOCs emissions occurs at a height of 100 m, but becomes insufficient at a height of 300 m. Air mass mixing increases with greater height; thus, the influence of regional characteristics at a height of 700 m is low. Finally, a successful empirical model was established to evaluate the distribution of surface VOCs in various regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Modem Phys 74:47–97

    Article  Google Scholar 

  • Atkinson K, Tuazon EC, Aschmann SM (1995) Products of the gas-phase reactions of a series of O3 with alkenes. Environ Sci Technol 29:1860–1866

    Article  CAS  Google Scholar 

  • Badol C, Locoge N, Léonardis T, Galloo JC (2008) Using a source-receptor approach to characterize VOC behavior in a French urban area influenced by industrial emissions part I: study area description, data set acquisition and qualitative data analysis of the data set. Sci Total Environ 389:441–452

    Article  CAS  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  Google Scholar 

  • Barabási AL, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Physica A 272:173–187

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    Article  CAS  Google Scholar 

  • Brulfert G, Galvez O, Yang F, Sloan JJ (2007) A regional modelling study of the high ozone episode of June 2001 in southern Ontario. Atmos Environ 41:3777–3788

    Article  CAS  Google Scholar 

  • Cavalcante RM, Campelo CS, Barbosa MJ, Silveria ER, Carvalho TV, Nascimento RF (2006) Determination of carbonyl compounds in air and cancer risk assessment in an academic institute in Fortaleza, Brazil. Atmos Environ 40:5701–5711

    Article  CAS  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A et al (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  CAS  Google Scholar 

  • Doyle JC, Alderson DL, Li L, Low S et al (2005) The robust yet fragile nature of the internet. Proc Natl Acad Sci USA 102:14497–14502

    Article  CAS  Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs. Publ Math 6:290–295

    Google Scholar 

  • Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  • Gan F, Hopke PK (2003) Data mining of the relationship between volatile organic components and transient high ozone formation. Anal Chim Acta 490:153–158

    Article  CAS  Google Scholar 

  • Geng F, Zhao C, Tang X, Lub G, Tie X (2007) Analysis of ozone and VOCs measured in Shanghai: a case study. Atmos Environ 41:989–1001

    Article  CAS  Google Scholar 

  • Giot L, Bader JS, Brouwer C, Chaudhuri A et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  CAS  Google Scholar 

  • Grosjean E, Deandrade AB, Grosjean D (1996) Carbonyl products of the gas-phase reaction of ozone with simple alkenes. Environ Sci Technol 30:975–983

    Article  CAS  Google Scholar 

  • Guenther A, Geron C, Pierce T, Lamb B, Harley P, Fall R (2000) Natural emissions of non-methane volatile organic compounds; carbon monoxide, and oxides of nitrogen from North America. Atmos Environ 34:2205–2230

    Article  CAS  Google Scholar 

  • Guimerá R, Amaral LAN (2004) Modeling the world-wide airport network. Eur Phys J B 38:381–385

    Article  Google Scholar 

  • Guimerá R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci USA 102:7794–7799

    Article  Google Scholar 

  • Gupta ML, Cicerone RJ, Blake DR, Rowland FS, Isaksen ISA (1998) Global atmospheric distributions and source strengths of light hydrocarbons and tetrachloroethene. J Geophys Res 103(D21):28219–28235

    Article  CAS  Google Scholar 

  • Hakami A, Harley RA, Milford JB, Odman MT, Russell AG (2004) Regional, three-dimensional assessment of the ozone formation potential of organic compounds. Atmos Environ 38:121–134

    Article  CAS  Google Scholar 

  • Ho KF, Lee SC, Guo H, Tsai WY (2004) Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Total Environ 322:155–166

    Article  CAS  Google Scholar 

  • Hoque RR, Khillare PS, Agarwal T, Shridhar V, Balachandran S (2008) Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci Total Environ 392:30–40

    Article  CAS  Google Scholar 

  • Hsieh CC, Tsai JH (2003) VOC concentration characteristics in Southern Taiwan. Chemosphere 50:545–556

    Article  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • LaCount DJ, Vignali M, Chettier R, Phansalkar A et al (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438:103–107

    Article  CAS  Google Scholar 

  • Lai LW, Cheng WL (2010) Urban heat island and air pollution: an emerging role for hospital respiratory admissions in an urban area. J Environ Health 72(6):32–35

    CAS  Google Scholar 

  • Latella A, Stani G, Cobelli L, Duane M, Junninen H, Astorga C, Larsen BR (2005) Semicontinuous GC analysis and receptor modelling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. J Chromatogr A 1071:29–39

    Article  CAS  Google Scholar 

  • Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312

    Article  CAS  Google Scholar 

  • Olson DA, Norris GA, Seila RL, Landis MS, Vette AF (2007) Chemical characterization of volatile organic compounds near the World Trade Center: ambient concentrations and source apportionment. Atmos Environ 41:5673–5683

    Article  CAS  Google Scholar 

  • Pankow JF, Luoa W, Benderb DA, Isabellea LM, Hollingswortha JS, Chena C, Ashera WE, Zogorskib JS (2003) Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmos Environ 37:5023–5046

    Article  CAS  Google Scholar 

  • Parra MA, González L, Elustondo D, Garrigó J, Bermejo R, Santamaría JM (2006) Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Sci Total Environ 370:157–167

    Article  CAS  Google Scholar 

  • Qin Y, Walk T, Gary R, Yao X, Elles S (2007) C2–C10 nonmethane hydrocarbons measured in Dallas, USA-Seasonal trends and diurnal characteristics. Atmos Environ 41:6018–6032

    Article  CAS  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  CAS  Google Scholar 

  • Seco R, Peñuelas J, Filellaet I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499

    Article  CAS  Google Scholar 

  • Srivastavaa A, Josepha AE, Patila S, Morea A, Dixitb RC, Prakashb M (2005) Air toxics in ambient air of Delhi. Atmos Environ 39:59–71

    Article  Google Scholar 

  • Swanson AL, Blake NJ (2003) Seasonal variation of C2–C4 nonmethane hydrocarbons and C1–C4 alkyl nitrates at the Summit Research Station in Greenland. J Geophys Res 108(D2):4065

    Article  Google Scholar 

  • Theloke J, Friedrich R (2007) Compilation of a database on the composition of anthropogenic VOC emissions for atmospheric modeling in Europe. Atmos Environ 41:4148–4160

    Article  CAS  Google Scholar 

  • Wang HK, Huang CH, Chen KS, Peng YP (2010) Seasonal variation and source apportionment of atmospheric carbonyl compounds in urban Kaohsiung, Taiwan. Aerosol Air Qual Res 10:559–570

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-word networks. Nature 393:440–445

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The funding support by the Environmental Protection Bureaus of Taichung County, Taiwan is highly appreciated. On December 25, 2010, Taichung County and Taichung City merged to form Taichung Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng-Jong Liang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, CW., Ku, CK. & Liang, JJ. The scale-free network behavior of ambient volatile organic compounds. Environ Sci Pollut Res 20, 872–883 (2013). https://doi.org/10.1007/s11356-012-1199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1199-z

Keywords

Navigation