Skip to main content
Log in

Batch and continuous biodegradation of Amaranth in plain distilled water by P. aeruginosa BCH and toxicological scrutiny using oxidative stress studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bacterium Pseudomonas aeruginosa BCH was able to degrade naphthylaminesulfonic azo dye Amaranth in plain distilled water within 6 h at 50 mg l−1 dye concentration. Studies were carried out to find the optimum physical conditions and which came out to be pH 7 and temperature 30 °C. Amaranth could also be decolorized at concentration 500 mg l−1. Presence of Zn and Hg ions could strongly slow down the decolorization process, whereas decolorization progressed rapidly in presence of Mn. Decolorization rate was increased with increasing cell mass. Induction in intracellular and extracellular activities of tyrosinase and NADH-DCIP reductase along with intracellular laccase and veratryl alcohol oxidase indicated their co-ordinate action during dye biodegradation. Up-flow bioreactor studies with alginate immobilized cells proved the capability of strain to degrade Amaranth in continuous process at 20 ml h−1 flow rate. Various analytical studies viz.—HPLC, HPTLC, and FTIR gave the confirmation that decolorization was due to biodegradation. From GC-MS analysis, various metabolites were detected, and possible degradation pathway was predicted. Toxicity studies carried out with Allium cepa L. through the assessment of various antioxidant enzymes viz. sulphur oxide dismutase, guaiacol peroxidase, and catalase along with estimation of lipid peroxidation and protein oxidation levels conclusively demonstrated that oxidative stress was generated by Amaranth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achary VM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310. doi:10.1016/j.ecoenv.2007.10.022

    Article  CAS  Google Scholar 

  • Anbazhagan M, Chellappan PR (2009) Activities of antioxidant enzyme and lipid peroxidation in ovarian cancer patients. Acad J Cancer Res 2:68–72

    CAS  Google Scholar 

  • Chequer FMD, Angeli F, Ferraz ERA, Tsuboy MS, Marcarini JC, Mantovani MS, Oliveira DP (2009) The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat Res 676:83–86. doi:10.1016/j.mrgentox.2009.04.004

    Article  CAS  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    CAS  Google Scholar 

  • Davis RJ, Gainer JL, O’Neal G, Wu IW (1994) Photocatalytic decolorization of waste water dyes. Water Environ Res 66:50–53, http://dx.doi.org/10.2175/WER.66.1.8

    Article  CAS  Google Scholar 

  • Dean RT, Shanlin FU, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    CAS  Google Scholar 

  • Enayatzamir K, Alikhani HA, Yakhchali B, Tabandehi F, Rodríguez-Couto S (2010) Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environ Sci Pollut Res 17:145–153. doi:10.1007/s11356-009-0109-5

    Article  CAS  Google Scholar 

  • Ferraz ERA, Grando MD, Oliveira DP (2011a) The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. J Hazard Mater 192:628–633. doi:10.1016/j.jhazmat.2011.05.063

    Article  CAS  Google Scholar 

  • Ferraz ERA, Umbuzeiro GAG, Caloto-Oliveira A, Chequer FMD, Zanoni MVB, Dorta DJ, Oliveira DP (2011b) Differential toxicity of Disperse Red 1 and Disperse Red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test. Environ Toxicol 26:489–497. doi:10.1002/tox.20576

    Article  CAS  Google Scholar 

  • Gao BY, Yue QY, Wang Y, Zhou WZ (2007) Color removal from dye-containing wastewater by magnesium chloride. J Environ Manage 82:167–172. doi:10.1016/j.jenvman.2005.12.019

    Article  CAS  Google Scholar 

  • Girelli AM, Mattei E, Messina A (2006) Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography. Anal Chim Acta 580:271–277. doi:10.1016/j.aca.2006.07.088

    Article  CAS  Google Scholar 

  • Gomi N, Yoshida S, Matsumoto K, Okudomi M, Konno H, Hisabori T, Sugano Y (2011) Degradation of the synthetic dye Amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products. Biodegradation 22:1239–1245. doi:10.1007/s10532-011-9478-9

    Article  CAS  Google Scholar 

  • Hong Y, Guo J, Xu Z, Mo C, Xu M, Sun G (2007) Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye Amaranth by Shewanella decolorationis S12. Appl Microbiol Biotechnol 75:647–654. doi:10.1007/s00253-007-0838-7

    Article  CAS  Google Scholar 

  • Isik M, Sponza DT (2003) Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process Biochem 38:1183–1192

    Article  CAS  Google Scholar 

  • Jadhav JP, Govindwar SP (2006) Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23:315–323. doi:10.1002/yea.1356

    Article  CAS  Google Scholar 

  • Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP (2007) Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68:394–400. doi:10.1016/j.chemosphere.2006.12.087

    Article  CAS  Google Scholar 

  • Jadhav UU, Dawkar VV, Tamboli DP, Govindwar SP (2009) Purification and characterization of veratryl alcohol oxidase from Comamonas sp. UVS and its role in decolorization of textile dyes. Biotechnol Bioprocess Eng 14:369–376. doi:10.1007/s12257-008-0300-4

    Article  CAS  Google Scholar 

  • Jadhav JP, Kalyani DC, Phugare SS, Govindwar SP (2010a) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresour Technol 101:165–173. doi:10.1016/j.biortech.2009.08.027

    Article  CAS  Google Scholar 

  • Jadhav JP, Phugare SS, Dhanve RS, Jadhav SB (2010b) Rapid biodegradation and decolorization of direct orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH. Biodegradation 21:453–463. doi:10.1007/s10532-009-9315-6

    Article  CAS  Google Scholar 

  • Jadhav SB, Phugare SS, Patil PS, Jadhav JP (2011) Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. Int Biodeterior Biodegrad 65:733–743. doi:10.1016/j.ibiod.2011.04.003

    Article  CAS  Google Scholar 

  • Jaochim F, Burrel A, Anderson J (1985) Mutagenicity of azo dyes in Salmonella/microsome assay using in-vitro and in-vivo activation. Mutat Res 156:131–138. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Johnson RF, Zenhausen A, Zollinger H (1978) Azo dyes. pp. 868–869. In: Mark HF, Mc ketta JJ, Othmer DF, Standen A (eds) Krik-othmer encyclopedia of chemical technol., vol. 2, 2nd edn. John Wiley, New York

    Google Scholar 

  • Lee YH, Pavlostathis SG (2004) Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Res 38:1838–1852. doi:10.1016/j.watres.2003.12

    Article  CAS  Google Scholar 

  • Lowry O, Rosbrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mok Y, Jo J (2007) Degradation of a textile azo dye by pulsed arc discharge to the surface of wastewater. Korean J Chem Eng 24:607–611. doi:10.1007/s11814-007-0011-0

    Article  CAS  Google Scholar 

  • Montiel AM, Fern'andez FJ, Marcial J, Soriano J, Barrios-Gonz’alez J, Tomasini A (2004) A fungal phenoloxidase (tyrosinase) involved in pentachlorophenol degradation. Biotechnol Lett 26:1353–1357. doi:10.1023/B:BILE.0000045632.36401.86

    Article  CAS  Google Scholar 

  • Pan H, Feng J, He G, Cerniglia C, Chen H (2012) Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria. Anaerobe. doi:10.1016/j.anaerobe.2012.05.002

  • Patil PS, Shedbalkar UU, Kalyani DC, Jadhav JP (2008) Biodegradation of Reactive Blue 59 by isolated bacterial consortium PMB11. J Ind Microbiol Biotechnol 35:1181–1190. doi:10.1007/s10295-008-0398-6

    Article  CAS  Google Scholar 

  • Pereira L, Coelho AV, Viegas CA, Santos MM, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139:68–77. doi:10.1016/j.jbiotec.2008.09.001

    Article  CAS  Google Scholar 

  • Phugare SS, Kalyani DC, Patil AV, Jadhav JP (2010) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186:713–723. doi:10.1016/j.jhazmat.2010.11.049

    Article  Google Scholar 

  • Pierce J (1994) Colour in textile effluents—the origins of the problem. J Soc Dyers Colourists 110:131–133. doi:10.1111/j.1478-4408.1994.tb01624.x

    Article  CAS  Google Scholar 

  • Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618–626

    CAS  Google Scholar 

  • Ramsay JA, Nguyen T (2002) Decoloration of textile dyes by Trametes versicolor and its effect on dye toxicity. Biotechnol Lett 24:1757–1761. doi:10.1023/A:1020644817514

    Article  CAS  Google Scholar 

  • Sani RK, Banerjee UC (1999) Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microb Technol 24:433–437

    Article  CAS  Google Scholar 

  • Surwase SN, Jadhav JP (2012) Efficient microbial conversion of l-tyrosine to l-DOPA by Brevundimonas sp. SGJ. Appl Biochem Biotechnol. doi:10.1007/s12010-012-9564-4

  • Tan BH, Ten TT, Omar AK (2000) Removal of dyes and industrial dye wastes by magnesium chloride. Water Res 34:597–601. doi:10.1016/S0043-1354(99)00151-7

    Article  CAS  Google Scholar 

  • Zucca P, Rescigno A, Olianas A, Maccioni S, Sollai FA, Sanjust E (2011) Induction, purification, and characterization of a laccase isozyme from Pleurotus sajor-caju and the potential in decolorization of textile dyes. J Mol Catal B Enzym 68:216–222. doi:10.1016/j.molcatb.2010.11.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti P. Jadhav.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadhav, S.B., Patil, N.S., Watharkar, A.D. et al. Batch and continuous biodegradation of Amaranth in plain distilled water by P. aeruginosa BCH and toxicological scrutiny using oxidative stress studies. Environ Sci Pollut Res 20, 2854–2866 (2013). https://doi.org/10.1007/s11356-012-1155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1155-y

Keywords

Navigation