Skip to main content
Log in

Biodegradation and removal of 3,4-dichloroaniline by Chlorella pyrenoidosa based on liquid chromatography-electrospray ionization-mass spectrometry

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

3,4-Dichloroaniline (3,4-DCA), widely used in the synthesis of dyes, textile and herbicides, is toxic to living organisms. The purpose of this study was to investigate the capability of green algae in degrading and removing 3,4-DCA in water. An environmentally ubiquitous green alga Chlorella pyrenoidosa was isolated from fresh aquatic environment. Then unicellular alga was incubated with 3,4-DCA at a concentration of 4.6 μg/ mL in water. The residual concentration of 3,4-DCA in the medium and the metabolites were analyzed. A removal percentage of 78.4 % was obtained over a 7-day period. Two major metabolites with less toxicity were identified as 3,4-dichloroformanilide and 3,4-dichloroacetanilide from the liquid chromatography-electrospray ionization-mass spectrometry analysis. The application of microalga C. pyrenoidosa may have potential for removing the environmental pollutant in aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adema D, Vink IGJ (1981) A comparative study of the toxicity of 1,1,2-trichloroethane, dieldrin, pentachlorophenol and 3,4-dichloroaniline for marine and fresh water organisms. Chemosphere 10:533–554

    Article  CAS  Google Scholar 

  • Crossland N (1990) A review of the fate and toxicity of 3, 4-dichloroaniline in aquatic environments. Chemosphere 21:1489–1497

    Article  CAS  Google Scholar 

  • Dabrowski JM, Peall SKC, Van Niekerk A, Reinecke AJ, Day JA, Schulz R (2002) Predicting runoff-induced pesticide input in agricultural sub-catchment surface waters: linking catchment variables and contamination. Water Res 36:4975–4984

    Article  CAS  Google Scholar 

  • David R, Jouanneau Y (2001) Genetic and biochemical characterization of the biphenyl dioxygenase from Pseudomonas sp. strain B4. J Microbiol Biotechnol 11:763–771

    CAS  Google Scholar 

  • Gorman DS, Levine R (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Nat Acad Sci USA 54:1665–1669

    Article  CAS  Google Scholar 

  • Huffman C, Allen S (1960) Herbicidal activity, molecular size vs. herbicidal activity of anilides. J Agric Food Chem 8:298–302

    Article  CAS  Google Scholar 

  • Ke L, Luo L, Wang P, Luan T, Tam NFY (2010) Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour Technol 101:6950–6961

    Article  CAS  Google Scholar 

  • Kearney PC, Plimmer JR (1972) Metabolism of 3,4-dichloroaniline in soils. J Agric Food Chem 20:584–585

    Article  CAS  Google Scholar 

  • Kilemade M, Mothersill C (2000) An in vitro assessment of the toxicity of 2,4-dichloroaniline using rainbow trout primary epidermal cell cultures. Environ Toxicol Chem 19:2093–2099

    Article  CAS  Google Scholar 

  • Kim YM, Park K, Kim WC, Shin JH, Kim JE, Park HD, Rhee IK (2007) Cloning and characterization of a catechol-degrading gene cluster from 3,4-dichloroaniline degrading bacterium Pseudomonas sp. KB35B. J Agric Food Chem 55:4722–4727

    Article  CAS  Google Scholar 

  • Kremer S, Sterner O (1996) Metabolism of 3,4-dichloroaniline by the basidiomycete Filoboletus species TA9054. J Agric Food Chem 44:1155–1159

    Article  CAS  Google Scholar 

  • Liu J, Liu H (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  Google Scholar 

  • Lovell CR, Eriksen NT, Lewitus AJ, Chen YP (2002) Resistance of the marine diatom Thalassiosira sp. to toxicity of phenolic compounds. Mar Ecol-Progr Ser 229:11–18

    Article  CAS  Google Scholar 

  • Lyons C, Katz S, Bartha R (1984) Mechanisms and pathways of aniline elimination from aquatic environments. Appl Environ Microbiol 48:491–496

    CAS  Google Scholar 

  • Lyons C, Katz S, Bartha R (1985) Persistence and mutagenic potential of herbicide-derived aniline residues in pond water. Bull Environ Contam Toxicol 35:696–703

    Article  CAS  Google Scholar 

  • Martins M, Rodrigues-Lima F, Dairou J, Lamouri A, Malagnac F, Silar P, Dupret JM (2009) An acetyltransferase conferring tolerance to toxic aromatic amine chemicals. J Biol Chem 284:18726–18733

    Article  CAS  Google Scholar 

  • Nassiri Y, Ginsburger-Vogel T, Mansot JL, Wéry J (1996) Effects of heavy metals on Tetraselmis suecica: ultrastructural and energy-dispersive X-ray spectroscopic studies. Bio Cell 86:151–160

    Article  CAS  Google Scholar 

  • OECD (2006) OECD Guidelines for the testing of chemicals. Test guideline 201, freshwater alga and cyanobacteria, growth inhibition test. OECD, Paris

  • Petroutsos D, Katapodis P, Samiotaki M, Panayotou G, Kekos D (2008) Detoxification of 2,4-dichlorophenol by the marine microalga Tetraselmis marina. Phytochemistry 69:707–714

    Article  CAS  Google Scholar 

  • Pflugmacher S, Sandermann H Jr (1998) Cytochrome P450 monooxygenases for fatty acids and xenobiotics in marine macroalgae. Plant Physiol 117:123–128

    Article  CAS  Google Scholar 

  • Pieper DH, Winkler R, Sandermann H Jr (1992) Formation of a toxic dimerization product of 3,4-dichloroaniline by lignin peroxidase from Phanerochaete chrysosporium. Angew Chem Int Ed 31:68–70

    Article  Google Scholar 

  • Pillai U, Ziegler T, Wang D, Kattnig M, McClure T, Liebler D, Mayersohn M, Sipes I (1996) 3,3′,4,4′-tetrachloroazobenzene absorption, disposition, and metabolism in male Fischer 344 rats. Drug Metab Disposition 24:238–244

    CAS  Google Scholar 

  • Pothuluri JV, Hinson JA, Cerniglia CE (1991) Propanil: toxicological characteristics, metabolism, and biodegradation potential in soil. J Environ Qual 20:330–347

    Article  CAS  Google Scholar 

  • Sandermann H Jr, Heller W, Hertkorn N, Hoque E, Pieper D, Winkler R (1998) A new intermediate in the mineralization of 3,4-dichloroaniline by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 64:3305–3312

    CAS  Google Scholar 

  • Sandermann H Jr, Scheel D, Trenck T (1983) Metabolism of environmental chemicals by plants-copolymerization into lignin. J Appl Polym Sci: Appl Polym Symp 37:407–420

    CAS  Google Scholar 

  • Semple KT, Cain RB (1995) Metabolism of phenols by Ochromonas danica. FEMS Microbiol Lett 133:253–257

    Article  CAS  Google Scholar 

  • Sosak-Swiderska B, Tyrawska D, Maslikowska B (1998) Microalgal ecotoxicity test with 3,4-dichloroaniline. Chemosphere 37:2975–2982

    Article  CAS  Google Scholar 

  • Tixier C, Sancelme M, Aīt-Aīssa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526

    Article  CAS  Google Scholar 

  • Tweedy B, Loeppky C, Ross JA (1970) Metobromuron: acetylation of the aniline moiety as a detoxification mechanism. Science 168:482–483

    Article  CAS  Google Scholar 

  • Wang L, Zheng B (2008) Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. J Environ Sci 20:1363–1372

    Article  CAS  Google Scholar 

  • You IS, Bartha R (1982) Metabolism of 3, 4-dichloroaniline by Pseudomonas putida. J Agric Food Chem 30:274–277

    Article  CAS  Google Scholar 

  • Zhang B, Lin S (2009) Effects of 3,4-dichloroaniline on testicle enzymes as biological markers in rats. Biomed Environ Sci 22:40–43

    Article  CAS  Google Scholar 

  • Zhang J, Sun JQ, Yuan QY, Li C, Yan X, Hong Q, Li SP (2011) Characterization of the propanil biodegradation pathway in Sphingomonas sp. Y57 and cloning of the propanil hydrolase gene prpH. J Hazard Mater 196:412–419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was partly supported by research grant from the Beijing Normal University–Hong Kong Baptist University United International College. Financial support from the Faculty Research Fund of Hong Kong Baptist University (FRG2/10-11/029) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karen Poon or Zongwei Cai.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Poon, K. & Cai, Z. Biodegradation and removal of 3,4-dichloroaniline by Chlorella pyrenoidosa based on liquid chromatography-electrospray ionization-mass spectrometry. Environ Sci Pollut Res 20, 552–557 (2013). https://doi.org/10.1007/s11356-012-0995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0995-9

Keywords

Navigation