Skip to main content

Advertisement

Log in

The astysphere and urban geochemistry—a new approach to integrate urban systems into the geoscientific concept of spheres and a challenging concept of modern geochemistry supporting the sustainable development of planet earth

  • AREA • URBAN GEOCHEMISTRY • DISCUSSION ARTICLE
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

In 1875, the geoscientist Walter Suess introduced several spheres, such as the lithosphere and the atmosphere to promote a comprehensive understanding of the system earth. Since then, this idea became the dominating concept for the understanding of the distribution of chemical elements in the system earth. Meanwhile, due to the importance of human beings on global element fluxes, the term anthroposphere was introduced. Nevertheless, in face of the ongoing urbanization of the earth, this concept is not any more adequate enough to develop a comprehensive understanding of global element fluxes in and between solid, liquid, and gaseous phases. This article discusses a new concept integrating urbanization into the geoscientific concept of spheres.

Main features

No geological exogenic force has altered the earth’s surface during the last centuries in such an extent as human activity. Humans have altered the morphology and element balances of the earth by establishing agrosystems first and urban systems later. Currently, urban systems happen to become the main regulators for fluxes of many elements on a global scale due to ongoing industrial and economic development and a growing number of inhabitants. Additionally, urban systems are constantly expanding and cover more and more former natural and agricultural areas. For nature, urban systems are new phenomena, which never existed in previous geological eras. The process of the globe’s urbanization concurrently is active with the global climate change. In fact, urban systems are a major emitter for climate active gases. Thus, beside the global changes in economy and society, urbanization is an important factor within the global change of nature as is already accepted for climate, ecosystems, and biodiversity.

Results

Due to the fact that urbanization has become a global process shaping the earth and that the urban systems are globally cross-linked among each other, a new geoscientific sphere has to be introduced: the astysphere. This sphere comprises the parts of the earth influenced by urban systems. Accepting urbanization as global ongoing process forming the astysphere comprehensively copes with the growing importance of urbanization on the creation of present geologic formations.

Discussion

Anthropogenic activities occur mainly in rural and urban environments. For long lasting periods of human history, human activities mainly were focused on hunting and agriculture, but since industrialization, urbanized areas became increasingly important for the material and energy fluxes of earth. Thus, it seems appropriate to classify the anthroposphere into an agriculturally and an urban-dominated sphere, which are the agrosphere (Krishna 2003) and the astysphere (introduced by Norra 2007).

Conclusions

We have to realize that urban systems are deposits, consumers, and transformers of resources interacting among each other and forming a network around the globe. Since the future of human mankind depends on the sustainable use of available resources, only a global and holistic view of the cross-linked urban systems forming together the astysphere provide the necessary geoscientific background understanding for global urban material and energy fluxes. If we want to ensure worth-living conditions for future generations of mankind, we have to develop global models of the future needs for resources by the global metasystem of urban systems, called astysphere.

Perspectives

The final vision for geoscientific research on the astysphere must be to design models describing the global process of urbanization of the earth and the development of the astysphere with respect to fluxes of materials, elements, and energy as well as with respect to the forming of the earth’s face. Besides that, just from the viewpoint of fundamental research, the geoscientific concept of spheres has to be complemented by the astysphere if this concept shall fully represent the system earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The author thanks Prof. Dr. G. Kloss, Department of Classical Studies, Universität Heidelberg, Germany for the discussion on the correct Greek expression for urban systems with respect to the geoscientific concept of spheres.

References

  • Angel S, Sheppard SC, Civco DL (2005) The dynamics of global urban expansion. Transport and Urban Development Department, The World Bank, Washington DC

    Google Scholar 

  • Bähr J (1997) Bevölkerungsgeographie. Ulmer, Stuttgart, Baccini P, Bader H-P 1996: Regionaler Stoffhaushalt. Spektrum Akademischer Verlag, Heidelberg, 420 pp

  • Baccini P, Bader H-P (1996) Regionaler Stoffhaushalt. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Baccini P, Brunner PH (1991) Metabolism of the anthroposphere. Springer, Berlin

    Google Scholar 

  • Christaller W (1933) Die zentralen Orte Süddeutschlands. Eine ökonomisch-geographische Untersuchung über die Gesetzmäßigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischen Funktionen. Fischer, Jena, p 331

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415:423

    Article  Google Scholar 

  • De Kimpe C, Morel JL (2000) Urban soils: a growing concern. Soil Sci 165:31–40

    Article  Google Scholar 

  • Duh JD, Shandas V, Chang H, George LA (2008) Rates of urbanisation and the resiliency of air and water quality. Sci Total Environ 400:238–256

    Article  CAS  Google Scholar 

  • Federal Office of the Environment (Umweltbundesamt) (2004) Hintergrundpapier: Flächenverbrauch, ein Umweltproblem mit wirtschaftlichen Folgen. Berlin

  • Fischer Weltalmanach (2005) Der Fischer Weltalmanach 2006. Fischer, Frankfurt am Main.Goldschmidt VM 1923: Geochemische Verteilungsgesetze der Elemente. Videnskapsseiskapets Skrifter. 1. Mat.-Naturv. Klasse, No. 3. Kristinia in Kommision be

  • Goldschmidt VM (1958) Geochemistry. Oxford University Press, London

    Google Scholar 

  • Kelly J, Thornton I, Simpson PR (1996) Urban geochemistry: a study of the influence of anthopogenic activity on the heavy metal content of soils in traditionally industrial areas and non-industrial areas of Britain. Appl Geochem 11:363–370

    Article  CAS  Google Scholar 

  • Krishna KR (2003) Agrosphere. Science, Enfield

    Google Scholar 

  • Lehmann A, Stahr K (2007) Nature and significance of anthropogenic urban soils. J Soils Sediments 7(4):247–260

    Article  CAS  Google Scholar 

  • Levit GS (2001) Biogeochemistry–biosphere–noosphere. Studien zur Theorie der Biologie Band 4, VWB—Verlag für Wissenschaftliche Bildung, Berlin

  • Lidell HG, Scott R (1996) A Greek–English lexicon. Clarendon, Oxford

    Google Scholar 

  • Mason B (1958) Principles of geochemistry. Wiley, New York

    Google Scholar 

  • Menge H, Güthling O (1957) Enzyklopädisches Wörterbuch der griechischen und deutschen Sprache. Erster Teil, Griechisch-Deutsch. 14. Auflage, Langenscheidt, Berlin

  • Norra S, Stüben D (2003) Urban soils. J Soils Sediments 3(4):230–233

    Article  Google Scholar 

  • Norra S (2007) Geochemie urbaner Systeme. Post-Doctoral Thesis, Universität Karlsruhe, Karlsruhe

  • Salvatore M, Pozzi F, Ataman E, Huddleston B, Bloise M (2005) Mapping global urban and rural population distributions. FAO, Rom

    Google Scholar 

  • Staudigel H, Albarede F, Blichert-Toft J, Edmond J, McDonough B, Jacobsen SB, Keeling R, Langmuir CH, Nielsen RL, Plank T, Rudnick R, Shaw HF, Shirey S, Veizer J, White W (1998) Geochemical Reference Model (GERM): description of the initiative. Chem Geol 145:153–159

    Article  CAS  Google Scholar 

  • Suess E (1875) Entstehung der Alpen. Baumüller, Vienna

    Google Scholar 

  • Sukopp H, Wittig R (eds) (1993) Stadtökologie. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Taylor K (2007) Urban environments. In: Perry C, Taylor K (eds) Environmental sedimentology. Blackwell, Maldon, pp 190–222

    Google Scholar 

  • Turchin P (2008) Arise ‘cliodynamics’. Nature 454:34–35

    Article  CAS  Google Scholar 

  • UN-Habitat (2007) State of the world’s cities 2006/7. Earthscan, London

    Google Scholar 

  • United Nations (2008) World Urbanization Prospects: The 2007 Revision. United Nations Department of Economic and Social Affairs/Population Division

  • United Nations Secretariat (1999) The World at Six Billion. United Nations

  • Vallelonga P, Van de Velde K, Calone J-P, Morgan VI, Boutron CF, Rosman KJR (2002) The lead pollution history of Law Dome, Antarctica, from isotopic measurements on ice cores: 1500 AD to 1989 AD. Earth Planet Sci Lett 204:291–306

    Article  CAS  Google Scholar 

  • Vernadsky VI (1926) Biosfera. Nauka, Leningrad

    Google Scholar 

  • Vernadsky VI (1997) The biosphere. Copernicus. Springer, New York

    Google Scholar 

  • Stahl W (2006) Statistisches Jahrbuch der Stahlindustrie 2006/2007. Verlag Stahleisen, Düsseldorf

    Google Scholar 

  • Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Norra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norra, S. The astysphere and urban geochemistry—a new approach to integrate urban systems into the geoscientific concept of spheres and a challenging concept of modern geochemistry supporting the sustainable development of planet earth. Environ Sci Pollut Res 16, 539–545 (2009). https://doi.org/10.1007/s11356-009-0183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-009-0183-8

Keywords

Navigation