Skip to main content

Advertisement

Log in

Estimating stand volume in broad-leaved forest using discrete-return LiDAR: plot-based approach

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Quantitative assessment of forests is important at a variety of scales for forest planning and management. This study investigated the use of small-footprint discrete-return lidar for estimating stand volume in broad-leaved forest at plot level. Field measurements were conducted at 20 sample plots in the study area in western Japan, composed of temperate broad-leaved trees. Five height variables and two density variables were derived from the lidar data: 25th, 50th, 75th, and 100th percentiles, and mean of laser canopy heights as height variables (h 25, h 50, h 75, h 100, h mean); and ground fraction and only-and-vegetation fraction (d GF, d OVF) as density variables, defined respectively as the proportion of laser returns that reached the ground, and the proportion of only echoes (i.e., single pulse returns for which the first and last pulses returned from the same point) within vegetation points. In addition, the normalized difference vegetation index (NDVI), which is often used as an estimator for leaf area index (LAI) and above-ground biomass, was derived from multispectral digital imagery as an alternative density variable (d NDVI). Nonlinear least-square regression with cross-validation analysis was performed with single variables and combinations; a total of 23 models were studied. The best prediction was found when h 75 and d OVF were used as independent variables, resulting in adjusted R 2 of 0.755 and root-mean-square error (RMSE) of 41.90 mha−1, corresponding to 16.4% of the mean stand volume, better than or comparable to the prediction models of previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–251. doi:10.1016/S0034-4257(97)00104-1

    Article  Google Scholar 

  • Drake JB, Dubayah RO, Knox RG, Clark DB, Blair JB (2002) Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens Environ 81:378–392. doi:10.1016/S0034-4257(02)00013-5

    Article  Google Scholar 

  • Drake JB, Knox RG, Dubayah RO, Clark DB, Condit R, Blair JB, Hofton M (2003) Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob Ecol Biogeogr 12:147–159. doi:10.1046/j.1466-822X.2003.00010.x

    Article  Google Scholar 

  • Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Peñuelas J, Valentini R (1995) Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types. Ecol Appl 5:28–41. doi:10.2307/1942049

    Article  Google Scholar 

  • Holmgren J (2004) Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scand J For Res 19:543–553. doi:10.1080/02827580410019472

    Article  Google Scholar 

  • Japanese Forest Agency (1970) Timber volume table. West Japan edition. J-FIC, Tokyo, p 63 (in Japanese)

  • Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D (1999a) Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens Environ 70:339–361. doi:10.1016/S0034-4257(99)00052-8

    Article  Google Scholar 

  • Lefsky MA, Harding D, Cohen WB, Parker G, Shugart HH (1999b) Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens Environ 67:83–98. doi:10.1016/S0034-4257(98)00071-6

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002a) Lidar remote sensing for ecosystem studies. Bioscience 52:19–30. doi:10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002b) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11:393–399. doi:10.1046/j.1466-822x.2002.00303.x

    Article  Google Scholar 

  • Lim K, Treitz PM (2004) Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scand J For Res 19:558–570. doi:10.1080/02827580410019490

    Article  Google Scholar 

  • Lim K, Treitz P, Baldwin K, Morrison I, Green J (2003a) Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Can J Rem Sens 29:658–678

    Google Scholar 

  • Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003b) LiDAR remote sensing of forest structure. Prog Phys Geogr 27:88–106. doi:10.1191/0309133303pp360ra

    Article  Google Scholar 

  • Maclean GA, Krabill WB (1986) Gross-merchantable timber volume estimation using an airborne lidar system. Can J Res 12:7–18

    Google Scholar 

  • Maltamo M, Eerikäinen K, Pitkänen J, Hyyppä J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distributions functions. Remote Sens Environ 90:319–330. doi:10.1016/j.rse.2004.01.006

    Article  Google Scholar 

  • Means JF, Acker SA, Brandon JF, Renslow M, Emerson L, Hendrix CJ (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogramm Eng Remote Sens 66:1367–1371

    Google Scholar 

  • Morimoto Y, Njoroge JB, Nakamura A, Sasaki T, Chihara Y (2006) Role of the EXPO‘70 forest project in forest restoration in urban areas. Landsc Ecol Eng 2:119–127. doi:10.1007/s11355-006-0007-7

    Article  Google Scholar 

  • Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253. doi:10.1016/S0034-4257(97)00041-2

    Article  Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99. doi:10.1016/S0034-4257(01)00290-5

    Article  Google Scholar 

  • Næsset E (2004) Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res 19:164–179

    Article  Google Scholar 

  • Næsset E, Bjerknes KO (2001) Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sens Environ 78:328–340. doi:10.1016/S0034-4257(01)00228-0

    Article  Google Scholar 

  • Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sens Environ 24:247–267. doi:10.1016/0034-4257(88)90028-4

    Article  Google Scholar 

  • Nelson R, Short A, Valenti M (2004) Measuring biomass and carbon in Delaware using an airborne profiling LIDAR. Scand J For Res 19:500–511. doi:10.1080/02827580410019508

    Article  Google Scholar 

  • Persson Å, Holmgren J, Sôderman U (2002) Detecting and measuring individual trees using airborne laser scanner. Photogramm Eng Remote Sens 68:925–932

    Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Rem Sens 29:564–577

    Google Scholar 

  • Popescu SC, Wynne RH, Scrivani JA (2004) Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. For Sci 50:551–565

    Google Scholar 

  • Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K (2008) Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography. Landsc Ecol Eng 4:47–55. doi:10.1007/s11355-008-0041-8

    Article  Google Scholar 

  • Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan: Woody plants I, II. Heibunsya, Tokyo (in Japanese)

  • Soininen A (2003) TerraScan User’s Guide

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150. doi:10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  • Wulder M (1998) Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog Phys Geogr 22:449–476

    Google Scholar 

Download references

Acknowledgments

We would like to thank the staff of the Commemorative Organization for the Japan World Exposition‘70 for their support. This research was partly financed by the Organization for Landscape and Urban Green Technology Development, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Ioki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioki, K., Imanishi, J., Sasaki, T. et al. Estimating stand volume in broad-leaved forest using discrete-return LiDAR: plot-based approach. Landscape Ecol Eng 6, 29–36 (2010). https://doi.org/10.1007/s11355-009-0077-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-009-0077-4

Keywords

Navigation