Skip to main content
Log in

Dynamic Analysis and Experimental Validation of Periodically Wrapped Cable-Harnessed Plate Structures

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

The impact of power and signal cable harnesses on the dynamic behavior of lightweight space structures has come into the spotlight in the recent past. The previous analytical modelling efforts in this area have primarily focused on either periodically wrapped beam structures or plate structures of parallel cable wrapping patterns.

Objective

The presented paper aims at experimental validation for an analytical model developed by the authors for cable harnessed plate structures with periodic patterns such as zigzag and diagonal. The work includes an extensive analysis of the vibration behavior of cable-harnessed plates in comparison to their host plates with no cables attached.

Methods

An energy equivalence homogenization technique is developed to model the vibrations behavior of the cable harnessed plates of periodic patterns. Experimental modal analysis is performed on cable-harnessed plates using impact hammer excitation and laser doppler vibrometry. The natural frequencies, mode shapes, and frequency response functions are obtained for comparisons with the model predictions.

Results

The impacts of the harnessing cables on plate dynamics are modeled and compared to the experimental frequency response functions for periodically wrapped cabled plates in four different test structures. The impact of the cable wrapping directions along the length and width on the modes that experience the largest stiffening effects are clearly discussed and validated with the test results for the two major wrapping patterns, diagonal and zigzag. It is shown that for a given number of fundamental elements and cable wrapping rows along the length, the parallel pattern experiences the largest stiffening along the length followed by the diagonal and zigzag patterns respectively. Also, the twist mode was stiffened the most for the zigzag pattern and the least in the parallel cabled plate. Finally, the wrapping angle for which the torsional frequency is maximum for each of the diagonal and zigzag patterns is found to be the same. A computational study is also performed to further analyze the system dynamics by varying the host plate dimensions.

Conclusions

The model and test results are shown to be in very good agreement. The analytical model is found to well predict the cables' mass and stiffening effects for all the wrapping patterns studied in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A c :

Cable cross-sectional area

a :

Plate length along the x - direction

b :

Plate width along the y - direction

D :

Flexural rigidity of the plate, \(\frac{{E}_{p}{h}^{3}}{12\left(1-{\nu }^{2}\right)}\) 

E p :

Plate Young’s modulus

E c :

Cable Young’s modulus

H i :

Coefficients in expression of system’s total strain energy (i = 1 to 13)

h :

Plate thickness

K 1 :

Coefficient in system’s total kinetic energy expression

L :

Length of a fundamental element

L 2 :

Width of a fundamental element

m :

Number of fundamental elements in a pattern in each row

n :

Number of rows of repeating fundamental elements 

N x :

Uniformly distributed compressive load per unit length in the x - direction

N y :

Uniformly distributed compressive load per unit length in the y - direction

N xy :

Uniformly distributed shear load per unit length in the 𝑥𝑦 plane

T :

Cable pre-tension

T sys :

Total kinetic energy of the system

t :

time

U sys :

Total strain energy of the system

w :

Transverse displacement

(x,y,z):

Global coordinate system

zc :

𝑧 coordinate of the plate-cable interface

𝜌p :

Plate mass density

𝜌c :

Plate mass density

𝜃:

Cable wrapping angle

v :

Poisson’s ratio

References

  1. Robertson L, Lane S, Ingram B, Hansen E, Babuska V, Goodding J, Mimovich M, Mehle G, Coombs D, Ardelean E (2007) Cable effects on the dynamics of large precision structures. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virginia pp. 2389

  2. Babuska V, Coombs DM, Goodding JC, Ardelean EV, Robertson LM, Lane SA (2010) Modeling and experimental validation of space structures with wiring harnesses. J Spacecr Rockets 47(6):1038–1052

    Article  Google Scholar 

  3. Ardelean EV, Goodding JC, Mehle G, Coombs DM, Babuška V, Robertson, LM, Lane SA, Ingram BR, Hansen EJ (2007) Dynamics of cable harnesses on large precision structures, collect. Tech. Pap. - AIAA/ASME/ASCE/AHS/ASC Struct. Struct Dyn Mater Conf 8(April):8225–8235

  4. Goodding J, Babuska V, Griffith DT, Ingram B, Robertson L (2007) Studies of free-free beam structural dynamics perturbations due to mounted cable harnesses. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virginia pp. 1–13

  5. Goodding JC, Ardelean EV, Babuška V, Robertson LM, Lane SA (2011) Experimental techniques and structural parameter estimation studies of spacecraft cables. J Spacecr Rockets 48(6):942–957

    Article  Google Scholar 

  6. Spak K, Agnes G, Inman D (2013) Cable modeling and internal damping developments. Appl Mech Rev 65(1):010801

  7. Spak K, Agnes G, Inman D (2013) Comparison of damping models for space flight cables. Chapter 21 pp. 183–194

  8. Spak KS, Agnes GS, Inman D (2013) Towards modeling of cable-harnessed structures: cable damping experiments. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virginia pp. 1889

  9. Spak K, Agnes G, Inman D (2014) Parameters for modeling stranded cables as structural beams. Exp Mech 54(9):1613–1626

    Article  Google Scholar 

  10. Spak KS, Agnes GS, Inman DJ (2015) Modeling vibration response and damping of cables and cabled structures. J Sound Vib 336:240–256

    Article  Google Scholar 

  11. Lesieutre GA (2010) Frequency-independent modal damping for flexural structures via a viscous geometric damping model. J Guid Control Dyn 33(6):1931–1935

    Article  Google Scholar 

  12. Lesieutre GA, Kauffman JL (2013) A viscous geometric beam damping model for nearly constant modal damping AIAA J 5(7):1688–1694

    Article  Google Scholar 

  13. Kauffman JL, Lesieutre GA, Babuška V (2014) Damping models for shear beams with applications to spacecraft wiring harnesses. J Spacecr Rockets 51(1):16–22

    Article  Google Scholar 

  14. Kauffman JL, Lesieutre GA (2013) Damping models for timoshenko beams with applications to spacecraft wiring harnesses. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virginia pp. 1890

  15. McPherson BN, Lesieutre GA, Kauffman JL (2018) Investigation of viscous damping terms for a timoshenko beam. 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virginia pp. 1–12

  16. Choi J, Inman DJ (2014) Spectrally formulated modeling of a cable-harnessed structure. J Sound Vib 333(14):3286–3304

    Article  Google Scholar 

  17. Choi J, Inman D (2013) Development of predictive modeling for cable harnessed structure. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virginia pp. 1888

  18. Yerrapragada K, Salehian A (2019) Analytical study of coupling effects for vibrations of cable-harnessed beam structures. J Vib Acoust 141(3):31001

    Article  Google Scholar 

  19. Yerrapragada K, Salehian A (2019) Coupled dynamics of cable-harnessed structures: experimental validation. J Vib Acoust 141(6):061001

  20. Yerrapragada K, Salehian A (2018) Coupled bending, torsion and axial vibrations of a cable-harnessed beam with periodic wrapping pattern. ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers pp. V008T10A030-V008T10A030

  21. Yerrapragada K, Salehian A (2017) Coupled axial, in plane and out of plane bending vibrations of cable harnessed space structures. International Conference on Applied Mathematics, Modeling and Computational Science. Springer pp. 249–257

  22. Martin B, Salehian A (2013) Vibration analysis of string-harnessed beam structures: a homogenization approach. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia, pp. 1892

  23. Martin B, Salehian A (2013) Dynamic Modelling of Cable-Harnessed Beam Structures with Periodic Wrapping Patterns: A Homogenization Approach. Int J Model Simul 33(4):185–202

    Google Scholar 

  24. Martin B, Salehian A (2013) Cable-harnessed space structures: a beam-cable approach. 24th International Association of Science and Technology for Development International Conference on Modelling and Simulation, ACTA Press Calgary, AB, Canada pp. 280–284

  25. Martin B, Salehian A (2014) Vibration modelling of string-harnessed beam structures using homogenization techniques. Volume 4B: Dynamics, Vibration, and Control. American Society of Mechanical Engineers pp. V04BT04A074-V04BT04A074

  26. Martin B, Salehian A (2016) Mass and stiffness effects of harnessing cables on structural dynamics: continuum modeling. AIAA J 54(9):2881–2904

    Article  Google Scholar 

  27. Martin B, Salehian A (2016) Homogenization modeling of periodically wrapped string-harnessed beam structures: experimental validation. AIAA J 54(12):3965–3980

    Article  Google Scholar 

  28. Agrawal P, Salehian A (2020) Damping mechanisms in cable-harnessed structures for space applications: analytical modeling. J Vib Acoust 143(2):021001

  29. Agrawal P, Salehian A (2020) Damping mechanisms in cable-harnessed structures for space applications: experimental validation. J Vib Acoust 143(2):024502

  30. Cao S, Agrawal P, Qi N, Salehian A (2020) Optimal geometry for cable wrapping to minimize dynamic impacts on cable-harnessed beam structures. J Vib Acoust 143(4):041005

  31. Martin B, Salehian A (2019) Continuum modeling of nonperiodic string-harnessed structures: perturbation theory and experiments. AIAA J 57(4):1736–1751

    Article  Google Scholar 

  32. Agrawal P, Salehian A (2019) Vibration analysis of cable-harnessed plate structures. Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019, Montreal, QC, Canada 1–8

  33. Agrawal P, Salehian A (2020) Vibrations analysis of cable-harnessed plates: continuum modeling and experimental validation. J Vib Acoust 143(5):051004

  34. Agrawal P, Salehian A (2021) Continuum modeling and vibrations analysis of cable-harnessed plate structures of periodic patterns. J Vib Acoust 143(6):061007

  35. Coombs DM, Goodding JC, Babuška V, Ardelean EV, Robertson LM, Lane SA (2011) Dynamic modeling and experimental validation of a cable-loaded panel. J Spacecr Rockets 48(6):958–973

    Article  Google Scholar 

  36. Remedia M, Aglietti GS, Richardson G (2015) Modelling the effect of electrical harness on microvibration response of structures. Acta Astronaut 109:88–102

    Article  Google Scholar 

  37. Pastor M, Binda M, Harčarik T (2012) Modal assurance criterion. Procedia Eng 48:543–548

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC-DG 341472-2009, Funder ID. 10.13039/501100000038)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salehian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Using the energy-equivalent homogenization technique, the total strain energy of the cable-harnessed plate system with periodic cable wrapping pattern was obtained as [34]:

$$\begin{aligned}\left({U}_{sys}\right)=&\frac{1}{2}{\int }_{0}^{a}{\int }_{0}^{b}\Big\{{H}_{1}+{H}_{2}w{,}_{xx}^{2}+{H}_{3}w{,}_{yy}^{2}+{H}_{4}w{,}_{xy}^{2}\\&+{H}_{5}w{,}_{x}^{2}+{H}_{6}w{,}_{y}^{2}-{H}_{7}w{,}_{xx}+{H}_{8}w{,}_{xy}\\&-{H}_{9}w{,}_{yy}+{H}_{10}w{,}_{xx}w{,}_{xy}+{H}_{11}w{,}_{yy}w{,}_{xy}\\&+{H}_{12}w{,}_{x}w{,}_{y}+{H}_{13}w{,}_{xx}w{,}_{yy}\Big\}dxdy\end{aligned}$$
(4)

And, the kinetic energy was obtained as [34]:

$${T}_{sys}=\frac{1}{2}{\int }_{0}^{b}{\int }_{0}^{a}\left\{{K}_{1}{\left(\dot{w}\right)}^{2}\right\}dxdy$$
(5)

where the coefficients \({H}_{i}\ (i=1\ to\ 13)\) and \({K}_{1}\) are mentioned for both the patterns as follows:

Zigzag Pattern

$${H}_{1}=\frac{{T}^{2}}{{E}_{c}{A}_{c}{L}_{2}\mathrm{cos}\theta }+\frac{1}{h{E}_{p}}\left({N}_{x}^{2}+{N}_{y}^{2}-2\nu {N}_{x}{N}_{y}+2\left(1+\nu \right){N}_{xy}^{2}\right)$$
$${H}_{2}=D+\frac{{E}_{c}{A}_{c}{z}_{c}^{2}{\mathrm{cos}}^{3}\theta }{{L}_{2}}+\frac{T{z}_{c}^{2}\mathrm{cos}\theta }{{L}_{2}}+\frac{{N}_{x}{h}^{2}}{24}$$
$${H}_{3}=D+\frac{{E}_{c}{A}_{c}{z}_{c}^{2}{\mathrm{sin}}^{4}\theta }{{L}_{2}\mathrm{cos}\theta }+\frac{T{z}_{c}^{2}{\mathrm{sin}}^{2}\theta }{{L}_{2}\mathrm{cos}\theta }+\frac{{N}_{y}{h}^{2}}{24}$$
$${H}_{4}=2D\left(1-\nu \right)+\frac{4{E}_{c}{A}_{c}{z}_{c}^{2}\mathrm{cos}\theta {\mathrm{sin}}^{2}\theta }{{L}_{2}}+\frac{T{z}_{c}^{2}}{{L}_{2}\mathrm{cos}\theta }+\frac{{N}_{x}{h}^{2}}{24}+\frac{{N}_{y}{h}^{2}}{24}$$
$${H}_{5}=\frac{T\mathrm{cos}\theta }{{L}_{2}}+{N}_{x}=0$$
$${H}_{6}=\frac{T{\mathrm{sin}}^{2}\theta }{{L}_{2}\mathrm{cos}\theta }+{N}_{y}=0$$
$${H}_{7}=0$$
$${H}_{8}=0$$
$${H}_{9}=0$$
$${H}_{10}=\frac{{N}_{xy}{h}^{2}}{6}=0$$
$${H}_{11}=\frac{{N}_{xy}{h}^{2}}{6}=0$$
$${H}_{12}=2{N}_{xy}=0$$
$${H}_{13}=2\nu D+\frac{2{E}_{c}{A}_{c}{z}_{c}^{2}\mathrm{cos}\theta {\mathrm{sin}}^{2}\theta }{{L}_{2}}$$
$${K}_{1}={\rho }_{p}h+\frac{{\rho }_{c}{A}_{c}}{{L}_{2}\mathrm{cos}\theta }+\frac{2{\rho }_{c}{A}_{c}h}{{L}_{1}{L}_{2}}$$

In these above mentioned coefficients for the zigzag pattern, the variables \({N}_{x}\), \({N}_{y}\), and \({N}_{xy}\) are written as [34]:

$${N}_{x}=-\frac{nT\mathrm{cos}\theta }{b}$$
$${N}_{y}=-\frac{2mT\mathrm{sin}\theta }{a}$$
$${N}_{xy}=0$$

where \(m\) is the number of fundamental elements in each row and \(n\) is the number of rows of repeating fundamental elements in the zigzag pattern. Additionally, the wrapping angle \(\theta\) can be calculated for zigzag pattern as

$$\mathrm{tan}\theta =\frac{2{L}_{2}}{{L}_{1}}=\frac{2bm}{an}$$

Diagonal Pattern

$${H}_{1}=\frac{{T}^{2}}{{E}_{c}{A}_{c}\left({L}_{1}+{L}_{2}\mathrm{cos}\theta \right)}+\frac{1}{h{E}_{p}}\left({N}_{x}^{2}+{N}_{y}^{2}-2\nu {N}_{x}{N}_{y}+2\left(1+\nu \right){N}_{xy}^{2}\right)$$
$${H}_{2}=D+\frac{{E}_{c}{A}_{c}{z}_{c}^{2}{\mathrm{cos}}^{3}\theta }{{L}_{2}}+\frac{T{z}_{c}^{2}\mathrm{cos}\theta }{{L}_{2}}+\frac{{N}_{x}{h}^{2}}{24}$$
$$\begin{aligned}{H}_{3}=D+{E}_{c}{A}_{c}&\left\{\frac{1}{{L}_{2}\mathrm{cos}\theta }\left(\frac{T{z}_{c}^{2}\mathrm{sin}\theta }{{E}_{c}{A}_{c}}+{z}_{c}^{2}{\mathrm{sin}}^{4}\theta \right)\right.\\&+\left.\frac{1}{{L}_{1}}\left(\frac{T{z}_{c}^{2}}{{E}_{c}{A}_{c}}+{z}_{c}^{2}\right)\right\}+\frac{{N}_{y}{h}^{2}}{24}\end{aligned}$$
$${H}_{4}=2D\left(1-\nu \right)+\frac{4{E}_{c}{A}_{c}{z}_{c}^{2}\mathrm{cos}\theta {\mathrm{sin}}^{2}\theta }{{L}_{2}}+\frac{T{z}_{c}^{2}}{{L}_{2}\mathrm{cos}\theta }+\frac{{N}_{x}{h}^{2}}{24}+\frac{{N}_{y}{h}^{2}}{24}$$
$${H}_{5}=\frac{T\mathrm{cos}\theta }{{L}_{2}}+{N}_{x}=0$$
$${H}_{6}=\frac{T{\mathrm{sin}}^{2}\theta }{{L}_{2}\mathrm{cos}\theta }+\frac{T}{{L}_{1}}+{N}_{y}=0$$
$${H}_{7}=\frac{2T{z}_{c}\mathrm{cos}\theta }{{L}_{2}}$$
$${H}_{8}=\frac{4T{z}_{c}\mathrm{sin}\theta }{{L}_{2}}$$
$${H}_{9}=-\frac{2T{z}_{c}{\mathrm{sin}}^{2}\theta }{{L}_{2}\mathrm{cos}\theta }+\frac{2T{z}_{c}}{{L}_{1}}$$
$${H}_{10}=\frac{{N}_{xy}{h}^{2}}{6}+\frac{2T{z}_{c}^{2}\mathrm{sin}\theta }{{L}_{2}}+\frac{4{E}_{c}{A}_{c}{z}_{c}^{2}{\mathrm{cos}}^{2}\theta \mathrm{sin}\theta }{{L}_{2}}$$
$${H}_{11}=\frac{{N}_{xy}{h}^{2}}{6}+\frac{2T{z}_{c}^{2}\mathrm{sin}\theta }{{L}_{2}}+\frac{4{E}_{c}{A}_{c}{z}_{c}^{2}{\mathrm{sin}}^{3}\theta }{{L}_{2}}$$
$${H}_{12}=\frac{2T\mathrm{sin}\theta }{{L}_{2}}+2{N}_{xy}=0$$
$${H}_{13}=2\nu D+\frac{2{E}_{c}{A}_{c}{z}_{c}^{2}\mathrm{cos}\theta {\mathrm{sin}}^{2}\theta }{{L}_{2}}$$
$${K}_{1}={\rho }_{p}h+\frac{{\rho }_{c}{A}_{c}}{{L}_{2}\mathrm{cos}\theta }+\frac{{\rho }_{c}{A}_{c}}{{L}_{1}}+\frac{2{\rho }_{c}{A}_{c}h}{{L}_{1}{L}_{2}}$$

In the above mentioned coefficients for the diagonal pattern, the variables \({N}_{x}\), \({N}_{y}\), and \({N}_{xy}\) are written as [34]:

$${N}_{x}=-\frac{nT\mathrm{cos}\theta }{b}$$
$${N}_{y}=-\frac{m\left(T+T\mathrm{sin}\theta \right)}{a}$$
$${N}_{xy}=-\frac{nT\mathrm{sin}\theta }{b}$$

where \(m\) is the number of fundamental elements in each row and \(n\) is the number of rows of repeating fundamental elements in the diagonal pattern. Additionally, the wrapping angle \(\theta\) can be calculated for diagonal pattern as

$$\mathrm{tan}\theta =\frac{{L}_{2}}{{L}_{1}}=\frac{bm}{an}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, P., Salehian, A. Dynamic Analysis and Experimental Validation of Periodically Wrapped Cable-Harnessed Plate Structures. Exp Mech 62, 909–927 (2022). https://doi.org/10.1007/s11340-022-00838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-022-00838-6

Keywords

Navigation